Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Front Immunol ; 11: 1884, 2020.
Article in English | MEDLINE | ID: mdl-32973780

ABSTRACT

Regulatory B (Breg) cells represent a population of suppressor B cells that participate in immunomodulatory processes and inhibition of excessive inflammation. The regulatory function of Breg cells have been demonstrated in mice and human with inflammatory diseases, cancer, after transplantation, and particularly in autoinflammatory disorders. In order to suppress inflammation, Breg cells produce anti-inflammatory mediators, induce death ligand-mediated apoptosis, and regulate many kinds of immune cells such as suppressing the proliferation and differentiation of effector T cell and increasing the number of regulatory T cells. Central nervous system Inflammatory demyelinating diseases (CNS IDDs) are a heterogeneous group of disorders, which occur against the background of an acute or chronic inflammatory process. With the advent of monoclonal antibodies directed against B cells, breakthroughs have been made in the treatment of CNS IDDs. Therefore, the number and function of B cells in IDDs have attracted attention. Meanwhile, increasing number of studies have confirmed that Breg cells play a role in alleviating autoimmune diseases, and treatment with Breg cells has also been proposed as a new therapeutic direction. In this review, we focus on the understanding of the development and function of Breg cells and on the diversification of Breg cells in CNS IDDs.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Central Nervous System/immunology , Demyelinating Autoimmune Diseases, CNS/immunology , Animals , B-Lymphocytes, Regulatory/metabolism , Cell Differentiation , Cell Proliferation , Cellular Microenvironment , Central Nervous System/metabolism , Demyelinating Autoimmune Diseases, CNS/metabolism , Demyelinating Autoimmune Diseases, CNS/therapy , Humans , Immunotherapy , Lymphocyte Activation , Phenotype , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-690087

ABSTRACT

This article reports two cases of childhood-onset nemaline myopathy diagnosed by muscle pathology and genetic diagnosis. The two patients had onset in early childhood, with muscle weakness as the first manifestation, as well as long disease duration and slow progression. Gomori staining and hematoxylin-eosin staining showed red-stained rods in the sarcoplasmic cytoplasm and sarcolemma under a light microscope. Electron microscopy showed that the dense nemaline rods were located under the muscle fiber sarcolemma and parallel to the long axis of the muscle fibers, and some muscle fiber myofilaments were dissolved and necrotic. Gene testing found that one of the two patients had heterozygous mutation (c.1013A>C) in the ACTA1 gene, and the other had compound heterozygous mutation (c.18676C>T and c.9812C>A) in the NEB gene. The two mutations were more common in nemaline myopathy. Nemaline myopathy is a recessive or dominant inheritance myopathy, in which the nemaline rod in the cytoplasm of myocytes is a characteristic muscle pathological change. Pathological and genetic diagnosis is the gold standard for diagnosis of nemaline myopathy.

SELECTION OF CITATIONS
SEARCH DETAIL
...