Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(16): 25377-25387, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34614870

ABSTRACT

We rigorously calculate the conservative gradient force (GF) and the non-conservative scattering force (SF) associated with the optical tweezers (the single beam optical trap). A wide range of parameters are considered, with particle size ranging from the Rayleigh to Mie regime (radius ∼3 µm), dielectric constant ranging from metallic (large and negative) to high dielectrics (large and positive), numerical aperture (NA) ranging from 0.5 to 1.33, and different polarizations. The trap depth associated with GF can reach 123 and 168 kBT per mW for a 0.5 µm-radius polystyrene particle illuminated by a 1064 nm Gaussian beam with NA = 0.9 and 1.3, respectively. This indicates that unless at a low beam power or with a small NA, the Brownian fluctuations do not play a role in the stability. The transverse GF orthogonal to beam propagation always dominates over the transverse SF. While the longitudinal SF can be larger than the longitudinal GF when the scattering is strong, the NA is small, or when absorption is present, optical trapping under these conditions is difficult. Generally speaking, absorption reduces GF and enhances SF, while increasing a dielectric constant enhances GF slightly but boosts SF significantly owing to stronger scattering. These results verify previous experimental observations and explain why optical tweezers are so robust across such a wide range of conditions. Our quantitative calculations will also provide a guide to future studies.

3.
J Phys Chem A ; 123(36): 7733-7743, 2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31408343

ABSTRACT

We consider the time-dependent dynamics of the isotope exchange reaction in collisions between an oxygen molecule and an oxygen atom: 16O16O + 18O → 16O18O + 16O. A theoretical approach using the multiconfiguration time-dependent Hartree method was employed to model the time evolution of the reaction. Two potential surfaces available in the literature were used in the calculations, and the results obtained with the two surfaces are compared with each other as well as with results of a previous theoretical time-independent approach. A good agreement for the reaction probabilities with the previous theoretical results is found. Comparing the results obtained using two potential energy surfaces allows us to understand the role of the reef/shoulder-like feature in the minimum energy path of the reaction in the isotope exchange process. Also, it was found that the distribution of final products of the reaction is highly anisotropic, which agrees with experimental observations and, at the same time, suggests that the family of approximated statistical approaches, assuming a randomized distribution over final exit channels, is not applicable to this case.

4.
Sci Rep ; 7(1): 18042, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29273791

ABSTRACT

The introduction of the concept of gradient force and scattering and absorption force is an important milestone in optical trapping. However the profiles of these forces are usually unknown, even for standard setups. Here, we successfully calculated them analytically via multipole expansion and numerically via Mie theory and fast Fourier transform. The former provides physical insight, while the latter is highly accurate and efficient. A recipe to create truly conservative energy landscapes is presented. These may open up qualitatively new features in optical manipulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...