ABSTRACT
Growth hormone (GH) has been used for over 35 years, and its safety and efficacy has been studied extensively. Experimental studies showing the permissive role of GH/insulin-like growth factor 1 (IGF-I) in carcinogenesis have raised concerns regarding the safety of GH replacement in children and adults who have received treatment for cancer and those with intracranial and pituitary tumours. A consensus statement was produced to guide decision-making on GH replacement in children and adult survivors of cancer, in those treated for intracranial and pituitary tumours and in patients with increased cancer risk. With the support of the European Society of Endocrinology, the Growth Hormone Research Society convened a Workshop, where 55 international key opinion leaders representing 10 professional societies were invited to participate. This consensus statement utilized: (1) a critical review paper produced before the Workshop, (2) five plenary talks, (3) evidence-based comments from four breakout groups, and (4) discussions during report-back sessions. Current evidence reviewed from the proceedings from the Workshop does not support an association between GH replacement and primary tumour or cancer recurrence. The effect of GH replacement on secondary neoplasia risk is minor compared to host- and tumour treatment-related factors. There is no evidence for an association between GH replacement and increased mortality from cancer amongst GH-deficient childhood cancer survivors. Patients with pituitary tumour or craniopharyngioma remnants receiving GH replacement do not need to be treated or monitored differently than those not receiving GH. GH replacement might be considered in GH-deficient adult cancer survivors in remission after careful individual risk/benefit analysis. In children with cancer predisposition syndromes, GH treatment is generally contraindicated but may be considered cautiously in select patients.
Subject(s)
Human Growth Hormone , Pituitary Neoplasms , Adult , Child , Growth Hormone , Human Growth Hormone/adverse effects , Humans , Insulin-Like Growth Factor I , Neoplasm Recurrence, Local/chemically induced , Pituitary Neoplasms/drug therapy , SurvivorsABSTRACT
Individuals surviving cancer and brain tumors may experience growth hormone (GH) deficiency as a result of tumor growth, surgical resection and/or radiotherapy involving the hypothalamic-pituitary region. Given the pro-mitogenic and anti-apoptotic properties of GH and insulin-like growth factor-I, the safety of GH replacement in this population has raised hypothetical safety concerns that have been debated for decades. Data from multicenter studies with extended follow-up have generally not found significant associations between GH replacement and cancer recurrence or mortality from cancer among childhood cancer survivors. Potential associations with secondary neoplasms, especially solid tumors, have been reported, although this risk appears to decline with longer follow-up. Data from survivors of pediatric or adult cancers who are treated with GH during adulthood are scarce, and the risk versus benefit profile of GH replacement of this population remains unclear. Studies pertaining to the safety of GH replacement in individuals treated for nonmalignant brain tumors, including craniopharyngioma and non-functioning pituitary adenoma, have generally been reassuring with regards to the risk of tumor recurrence. The present review offers a summary of the most current medical literature regarding GH treatment of patients who have survived cancer and brain tumors, with the emphasis on areas where active research is required and where consensus on clinical practice is lacking.
Subject(s)
Brain Neoplasms , Dwarfism, Pituitary , Human Growth Hormone , Pituitary Neoplasms , Adult , Brain Neoplasms/drug therapy , Child , Growth Hormone , HumansABSTRACT
Pasireotide is a new-generation somatostatin analog that acts through binding to multiple somatostatin receptor subtypes. Studies have shown that pasireotide induces hyperglycemia, reduces glucocorticoid secretion, alters neurotransmission, and potentially affects stress responses typically manifested as hyperglycemia and increased corticosterone secretion. This study specifically aimed to evaluate whether pasireotide treatment modifies glucose and costicosterone secretion in response to acute restraint stress. Male Holtzman rats of 150-200 g were treated with pasireotide (10 µg/kg/day) twice-daily for two weeks or vehicle for the same period. Blood samples were collected at baseline and after 5, 10, 30, and 60 min of restraint stress. The three experimental groups comprised of vehicle + restraint (VEHR), pasireotide + restraint (PASR), and pasireotide + saline (PASNR). Following pasireotide treatment, no significant differences in baseline glucose and corticosterone levels were observed among the three groups. During restraint, hyperglycemia was observed at 10 min (p < .01 for both comparisons), peaked at 30 min (p < .01 for both comparisons) and showed higher 60 min areas under glucose curves in the VEHR and PASR stressed groups when compared to the non-stressed PASNR group (p < .05 for both comparisons). Restraint also increased corticosterone secretion in the VEHR and PASR stressed groups at 5 min (p < .01 for both comparisons), and peaked at 30 min (p < .01 for both comparisons) with corresponding higher 60 min areas under corticosterone curves when compared to the non-stressed PASNR group (p < .01 for both comparisons). In conclusion, pasireotide treatment does not modify hyperglycemic- and corticosterone-restraint stress responses, thus preserving acute stress regulation.