Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36230710

ABSTRACT

Malignant pleural mesothelioma (MPM) is a deadly thoracic malignancy and existing treatment options are limited. Chemotherapy remains the most widely used first-line treatment regimen for patients with unresectable MPM, but is hampered by drug resistance issues. The current study demonstrated a modest enhancement of MPM cell sensitivity to chemotherapy drug treatment following microRNA (miRNA) transfection in MPM cell lines, albeit not for all tested miRNAs. This effect was more pronounced for FAK (PND-1186) small molecule inhibitor treatment; consistent with previously published data. We previously established that MPM response to survivin (YM155) small molecule inhibitor treatment is unrelated to basal survivin expression. Here, we showed that MPM response to YM155 treatment is enhanced following miRNA transfection of YM155-resistant MPM cells. We determined that YM155-resistant MPM cells secrete a higher level of exosomes in comparison to YM155-sensitive MPM cells. Despite this, an exosome inhibitor (GW4896) did not enhance MPM cell sensitivity to YM155. Additionally, our study showed no evidence of a correlation between the mRNA expression of inhibitor of apoptosis (IAP) gene family members and MPM cell sensitivity to YM155. However, two drug transporter genes, ABCA6 and ABCA10, were upregulated in the MPM cell lines and correlated with poor sensitivity to YM155.

3.
Am J Ind Med ; 65(3): 157-161, 2022 03.
Article in English | MEDLINE | ID: mdl-34962302

ABSTRACT

There is no identified risk-free threshold exposure to asbestos. Based on epidemiology and toxicology, asbestos fiber dimensions have been implicated in causing asbestos-related diseases. Phase-contrast microscopy provides only a limited index of exposure to fiber dimensions implicated in mesothelioma induction. Installed asbestos-containing materials (ACMs) create an ongoing risk of intense exposure during natural disasters and remodeling, along with low-level exposure arising from the continual emission of airborne asbestos into the environment arising from weathering of installed ACM. Epidemiological studies have demonstrated a risk of disease associated with proximity to asbestos cement roofing (ACR), while ongoing environmental emissions of asbestos from installed ACR have also been demonstrated. Owing to the limitations of the available data, a precautionary approach is warranted; asbestos-free roofing materials should be used in new construction and existing ACR should be removed at the earliest opportunity.


Subject(s)
Asbestos , Mesothelioma, Malignant , Mesothelioma , Occupational Exposure , Asbestos/toxicity , Construction Materials/toxicity , Humans , Mesothelioma/epidemiology , Occupational Exposure/adverse effects , Public Health , Weather
4.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34638565

ABSTRACT

Malignant pleural mesothelioma (MPM) is an aggressive malignancy with limited effective treatment options. Focal adhesion kinase (FAK) inhibitors have been shown to efficiently suppress MPM cell growth initially, with limited utility in the current clinical setting. In this study, we utilised a large collection of MPM cell lines and MPM tissue samples to study the role of E-cadherin (CDH1) and microRNA on the efficacy of FAK inhibitors in MPM. The immunohistochemistry (IHC) results showed that the majority of MPM FFPE samples exhibited either the absence of, or very low, E-cadherin protein expression in MPM tissue. We showed that MPM cells with high CDH1 mRNA levels exhibited resistance to the FAK inhibitor PND-1186. In summary, MPM cells that did not express CDH1 mRNA were sensitive to PND-1186, and MPM cells that retained CDH1 mRNA were resistant. A cell cycle analysis showed that PND-1186 induced cell cycle disruption by inducing the G2/M arrest of MPM cells. A protein-protein interaction study showed that EGFR is linked to the FAK pathway, and a target scan of the microRNAs revealed that microRNAs (miR-17, miR221, miR-222, miR137, and miR148) interact with EGFR 3'UTR. Transfection of MPM cells with these microRNAs sensitised the CHD1-expressing FAK-inhibitor-resistant MPM cells to the FAK inhibitor.


Subject(s)
Antigens, CD/genetics , Antigens, CD/metabolism , Cadherins/genetics , Cadherins/metabolism , Focal Adhesion Kinase 1/antagonists & inhibitors , Mesothelioma, Malignant/drug therapy , Mesothelioma, Malignant/genetics , MicroRNAs/physiology , Protein Kinase Inhibitors/pharmacology , Aminopyridines/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , ErbB Receptors/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Protein Interaction Maps
5.
Front Oncol ; 11: 650136, 2021.
Article in English | MEDLINE | ID: mdl-33614517
6.
Front Oncol ; 10: 579327, 2020.
Article in English | MEDLINE | ID: mdl-33304846

ABSTRACT

BACKGROUND: The diagnosis of malignant pleural mesothelioma (MPM) can be difficult, in part due to the difficulty in distinguishing between MPM and reactive mesothelial hyperplasia (RMH). The tumor suppressor gene, CDKN2A, is frequently silenced by epigenetic mechanisms in many cancers; in the case of MPM it is mostly silenced via genomic deletion. Co-deletion of the CDKN2A and methylthioadenosine phosphorylase (MTAP) genes has been researched extensively and discovered to be a highly specific characteristic of MPM. Most studies have used FISH to detect the deletion of CDKN2A and IHC for MTAP as a surrogate for this. In this study, we aim to investigate and validate droplet digital PCR (ddPCR) as an emerging alternative and efficient testing method in diagnosing MPM, by particularly emphasizing on the loss of MTAP and CDKN2A. METHODS: This study included 75 formalin fixed paraffin embedded (FFPE) MPM tissue, and 12 normal pleural tissue and 10 RMH as control. Additionally, primary MPM cell lines and normal pleural samples were used as biomarker detection controls, as established in our previous publication. All FFPE specimens were processed to isolate the DNA, that was subsequently used for ddPCR detection of CDKN2A and MTAP. FFPE samples were also analyzed by fluorescence in situ hybridization (FISH) for CDKN2A and MTAP deletion, and for MTAP IHC expression. Concordance of IHC and ddPCR with FISH were studied in these samples. RESULTS: 95% and 82% of cases showed co-deletion of both MTAP and CDKN2A when determined by FISH and ddPCR respectively. ddPCR has a sensitivity of 72% and specificity of 100% in detecting CDKN2A homozygous loss in MPM. ddPCR also has a concordance rate of 92% with FISH in detecting homozygous loss of CDKN2A. MTAP IHC was 68% sensitive and 100% specific for detecting CDKN2A homozygous loss in MPM when these losses were determined by ddPCR. CONCLUSION: Our study confirms that MTAP is often co-deleted with CDKN2A in MPM. Our in-house designed ddPCR assays for MTAP and CDKN2A are useful in differentiating MPM from RMH, and is highly concordant with FISH that is currently used in diagnosing MPM. ddPCR detection of these genetic losses can potentially be utilized as an alternative method in the diagnosis of MPM and for the future development of a less-invasive MPM-specific detection technique on MPM tumor tissue DNA.

7.
Lung Cancer (Auckl) ; 11: 1-11, 2020.
Article in English | MEDLINE | ID: mdl-32021524

ABSTRACT

Asbestos is a naturally occurring mineral consisting of extremely fine fibres that can become trapped in the lungs after inhalation. Occupational and environmental exposures to asbestos are linked to development of lung cancer and malignant mesothelioma, a cancer of the lining surrounding the lung. This review discusses the factors that are making asbestos-induced lung cancer a continuing problem, including the extensive historic use of asbestos and decades long latency between exposure and disease development. Genomic mutations of DNA nucleotides and gene rearrangements driving lung cancer are well-studied, with biomarkers and targeted therapies already in clinical use for some of these mutations. The genes involved in these mutation biomarkers and targeted therapies are also involved in epigenetic mechanisms and are discussed in this review as it is hoped that identification of epigenetic aberrations in these genes will enable the same gene biomarkers and targeted therapies to be used. Currently, understanding of how asbestos fibres trapped in the lungs leads to epigenetic changes and lung cancer is incomplete. It has been shown that oxidoreduction reactions on fibre surfaces generate reactive oxygen species (ROS) which in turn damage DNA, leading to genetic and epigenetic alterations that reduce the activity of tumour suppressor genes. Epigenetic DNA methylation changes associated with lung cancer are summarised in this review, and some of these changes will be due to asbestos exposure. So far, little research has been carried out to separate the asbestos driven epigenetic changes from those due to non-asbestos causes of lung cancer. Asbestos-associated lung cancers exhibit less methylation variability than lung cancers in general, and in a large proportion of samples variability has been found to be restricted to promoter regions. Epigenetic aberrations in cancer are proving to be promising biomarkers for diagnosing cancers. It is hoped that further understanding of epigenetic changes in lung cancer can result in useful asbestos-associated lung cancer biomarkers to guide treatment. Research is ongoing into the detection of lung cancer epigenetic alterations using non-invasive samples of blood and sputum. These efforts hold the promise of non-invasive cancer diagnosis in the future. Efforts to reverse epigenetic aberrations in lung cancer by epigenetic therapies are ongoing but have not yet yielded success.

SELECTION OF CITATIONS
SEARCH DETAIL
...