Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.300
Filter
1.
Small ; : e2402655, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949408

ABSTRACT

Solution Gated Graphene Field-Effect Transistors (SGGT) are eagerly anticipated as an amplification platform for fabricating advanced ultra-sensitive sensors, allowing significant modulation of the drain current with minimal gate voltage. However, few studies have focused on light-matter interplay gating control for SGGT. Herein, this challenge is addressed by creating an innovative photoelectrochemical solution-gated graphene field-effect transistor (PEC-SGGT) functionalized with enzyme cascade reactions (ECR) for Organophosphorus (OPs) detection. The ECR system, consisting of acetylcholinesterase (AChE) and CuBTC nanomimetic enzymes, selectively recognizes OPs and forms o-phenylenediamine (oPD) oligomers sediment on the PEC electrode, with layer thickness related to the OPs concentration, demonstrating time-integrated amplification. Under light stimulation, the additional photovoltage generated on the PEC gate electrode is influenced by the oPD oligomers sediment layer, creating a differentiated voltage distribution along the gate path. PEC-SGGT, inherently equipped with built-in amplification circuits, sensitively captures gate voltage changes and delivers output with an impressive thousandfold current gain. The seamless integration of these three amplification modes in this advanced sensor allows a good linear range and highly sensitive detection of OPs, with a detection limit as low as 0.05 pm. This work provides a proof-of-concept for the feasibility of light-assisted functionalized gate-controlled PEC-SGGT for small molecule detection.

2.
Fitoterapia ; 177: 106111, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971330

ABSTRACT

Euphorbia lathyris L. (EL) is a traditional poisonous herbal medicine used to treat dropsy, ascites, amenorrhea, anuria and constipation. Processing to reduce toxicity of EL is essential for its safe and effective application. However, there is little known regarding the molecular mechanism of reducing toxicity after EL processing. This research aimed to screen the differential markers for EL and PEL, explore the differential mechanisms of inflammatory injury induced by EL and processed EL (PEL) to expound the mechanism of alleviating toxicity after EL processing. The results showed that 15 potential biomarkers, mainly belonging to diterpenoids, were screened to distinguish EL from PEL. EL promoted the expressions of TLR4, NLRP3, NF-κB p65, IL-1ß and TNF-α, increased lipid rafts abundance and promoted TLR4 positioning to lipid rafts. Meanwhile, EL decreased LXRα and ABCA1 expression, and reduced cholesterol efflux. In contrast to EL, the effects of PEL on these indicators were markedly weakened. In addition, Euphorbia factors L1, L2, and L3 affected LXRα, ABCA1, TLR4, NLRP3, NF-κB p65, TNF-α and IL-1ß expression, influenced cholesterol efflux and lipid rafts abundance, and interfered with the colocalization of TLR4 and lipid rafts. The inflammatory injury caused by processed EL was significantly weaker than that caused by crude EL, and reduction of Euphorbia factors L1, L2, and L3 as well as attenuation of inflammatory injury participated in processing-based detoxification of EL. Our results provide valuable insights into the attenuated mechanism of EL processing and will guide future research on the processing mechanism of toxic traditional Chinese medicine.

3.
mLife ; 3(2): 291-306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948140

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a current global public health problem due to its increasing resistance to the most recent antibiotic therapies. One critical approach is to develop ways to revitalize existing antibiotics. Here, we show that the phytogenic compound cinnamaldehyde (CIN) and ß-lactam antibiotic combinations can functionally synergize and resensitize clinical MRSA isolates to ß-lactam therapy and inhibit MRSA biofilm formation. Mechanistic studies indicated that the CIN potentiation effect on ß-lactams was primarily the result of inhibition of the mecA expression by targeting the staphylococcal accessory regulator sarA. CIN alone or in combination with ß-lactams decreased sarA gene expression and increased SarA protein phosphorylation that impaired SarA binding to the mecA promoter element and downregulated virulence genes such as those encoding biofilm, α-hemolysin, and adhesin. Perturbation of SarA-mecA binding thus interfered with PBP2a biosynthesis and this decreased MRSA resistance to ß-lactams. Furthermore, CIN fully restored the anti-MRSA activities of ß-lactam antibiotics in vivo in murine models of bacteremia and biofilm infections. Together, our results indicated that CIN acts as a ß-lactam adjuvant and can be applied as an alternative therapy to combat multidrug-resistant MRSA infections.

4.
Inorg Chem ; 63(26): 12240-12247, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946338

ABSTRACT

An unusual crystalline porous framework constructed from four types of cages, including all-inorganic Keggin-type polyoxometalate (POM) cages [H3W12O40]5-, organic hexamethylenetetramine (Hmt) cages, nanosized silver-Hmt coordination cages, and giant POM-silver-Hmt cages, was hydrothermally synthesized and structurally characterized. The framework features a highly symmetrical structure with one-dimensional nanoscale channels and holds good thermal/solvent stability, which endow it with proton conduction properties and heterogeneous catalytic activity for pyrazole. This paper not only contributes to broadening the structural diversity of cage-based crystalline porous framework materials but also sheds new light on the design of new functional framework materials.

5.
Mol Ecol Resour ; : e13987, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956928

ABSTRACT

The utility of a universal DNA 'barcode' fragment (658 base pairs of the Cytochrome C Oxidase I [COI] gene) has been established as a useful tool for species identification, and widely criticized as one for understanding the evolutionary history of a group. Large amounts of COI sequence data have been produced that hold promise for rapid species identification, for example, for biosecurity. The fruit fly tribe Dacini holds about a thousand species, of which 80 are pests of economic concern. We generated a COI reference library for 265 species of Dacini containing 5601 sequences that span most of the COI gene using circular consensus sequencing. We compared distance metrics versus monophyly assessments for species identification and although we found a 'soft' barcode gap around 2% pairwise distance, the exceptions to this rule dictate that a monophyly assessment is the only reliable method for species identification. We found that all fragments regularly used for Dacini fruit fly identification >450 base pairs long provide similar resolution. 11.3% of the species in our dataset were non-monophyletic in a COI tree, which is mostly due to species complexes. We conclude with recommendations for the future generation and use of COI libraries. We revise the generic assignment of Dacus transversus stat. rev. Hardy 1982, and Dacus perpusillus stat. rev. Drew 1971 and we establish Dacus maculipterus White 1998 syn. nov. as a junior synonym of Dacus satanas Liang et al. 1993.

6.
mSystems ; : e0052224, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980058

ABSTRACT

The gut microbiota is essential for providing colonization resistance against pathogens. Dietary sugars markedly shift the composition of the intestinal microbiota and alter host susceptibility to enteric infections. Here, we demonstrate the effect of L-arabinose on bacterial infection by using a mouse infection model with Salmonella enterica serovar Typhimurium (S. Tm). In the presence of microbiota, L-arabinose induces a dramatic expansion of Enterobacteriaceae, thereby decreasing the microbiota diversity and causing more severe systemic infection. However, L-arabinose supplementation does not alter the disease progression of Salmonella infection in a microbiota-depleted mouse model. More importantly, short-term supplementation of L-arabinose fails to exert anti-diabetic effects in Salmonella-infected hyperglycemia mice and still promotes infection. Overall, our work reveals that a high intake of dietary L-arabinose supports a bloom of Enterobacteriaceae in Salmonella-infected gut, further accelerating the process of systemic infection.IMPORTANCEL-arabinose is a promising natural sweetener and food additive for the regulation of hyperglycemia. Since diabetic subjects are more susceptible to infections, the safety of dietary L-arabinose in diabetic patients experiencing infection remains a concern. Our findings reveal that L-arabinose exacerbates Salmonella infection outcome by inducing gut microbiota dysbiosis in mice. High dietary intake of L-arabinose may be deleterious for diabetic individuals undergoing infection.

8.
Metab Brain Dis ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995495

ABSTRACT

Increasing evidences implicate vital role of neuronal damage in the development of hepatic encephalopathy (HE). Neurofilament light chain (NfL) is the main frame component of neurons and is closely related to axonal radial growth and neuronal structural stability. We hypothesized that NfL as a biomarker of axonal injury may contribute to early diagnosis of HE. This study recruited 101 patients with liver cirrhosis, 10 healthy individuals, and 7 patients with Parkinson's disease. Minimal hepatic encephalopathy (MHE) was diagnosed using psychometric hepatic encephalopathy score. Serum NfL levels were measured by the electrochemiluminescence immunoassay. Serum NfL levels in cirrhotic patients with MHE were significantly higher than cirrhotic patients without MHE, and increased accordingly with the aggravation of HE. Serum NfL levels were associated with psychometric hepatic encephalopathy score, Child-Pugh score, model for end-stage liver disease score, and days of hospitalization. Additionally, serum NfL was an independent predictor of MHE (odds ratio of 1.020 (95% CI 1.005-1.034); P = 0.007). The discriminative abilities of serum NfL were high for identifying MHE (AUC of 0.8134 (95% CI 0.7130-0.9219); P ˂ 0.001) and OHE (AUC of 0.8852 (95% CI 0.8117-0.9587); P ˂ 0.001). Elevated serum NfL levels correlated with the presence of MHE and associated with the severity of HE, are expected to be a biomarker in patients with cirrhosis. Our study suggested that neuronal damage may play a critical role in the development of HE.

9.
J Biol Methods ; 11: e99010010, 2024.
Article in English | MEDLINE | ID: mdl-38988499

ABSTRACT

Alzheimer's disease (AD) is a serious dementia afflicting aging population and is characterized by cognitive decline, amyloid-ß plaques, and neurofibrillary tangles. AD substantially impairs the life quality of the victims and poses a heavy burden on the society at large. The number of people with dementia due to AD, prodromal AD, and preclinical AD is estimated to stand at roughly 3.2, 69, and 315 million worldwide, respectively. Current clinical diagnosis is based on clinical symptoms, and clinical research demonstrated that positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarkers had excellent diagnostic performance. However, the application of CSF biomarker tests and PET are restricted by the invasiveness and high cost. The presence of clinical symptoms means that AD pathology has been progressing for many years, and only a few drugs have been approved for the traetemnt of AD. Therefore, early diagnosis is extremely important for controlling the outcomes caused by AD. In this review, we provided an overview of developing clinical diagnostic criteria, diagnostic strategies under clinical research, developing blood based-biomarker assays, and promising nanotechnologically-based assays.

10.
Heliyon ; 10(11): e32251, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38933955

ABSTRACT

Autism spectrum disorder (ASD) is a behaviorally defined complex neurodevelopmental syndrome characterized by persistent social communication and interaction deficit. Transcranial magnetic stimulation (TMS) is a promising and emerging tool for the intervention of ASD by reducing both core and associate symptoms. Several reviews have been published regarding TMS-based ASD treatment, however, a systematic review on study characteristics, specific stimulating parameters, localization techniques, stimulated targets, behavioral outcomes, and neuroimage biomarker changes is lagged behind since 2018. Here, we performed a systematic search on literatures published after 2018 in PubMed, Web of Science, and Science Direct. After screening, the final systematic review included 17 articles, composing seven randomized controlled trial studies and ten open-label studies. Two studies are double-blind, while the other studies have a moderate to high risk of bias attributing to inadequate subject- and evaluator-blinding to treatment allocation. Five studies utilize theta-burst stimulation mode, and the others apply repetitive TMS with low frequency (five studies), high frequency (six studies), and combined low and high frequency stimulation (one study). Most researchers prioritize the bilateral dorsolateral prefrontal lobe as stimulation target, while parietal lobule, inferior parietal lobule, and posterior superior temporal sulci have also emerged as new targets of attention. One third of the studies use neuronavigation based on anatomical magnetic resonance imaging to locate the stimulation target. After TMS intervention, discernible enhancements across a spectrum of scales are evident in stereotyped behavior, repetitive behavior, and verbal social domains. A comprehensive review of literature spanning the last five years demonstrates the potential of TMS treatment for ASD in ameliorating the clinical core symptoms.

11.
J Org Chem ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935867

ABSTRACT

N-Alkoxyphthalimides, one kind of phthalimide derivative, have great importance in synthesis, mainly used as free radical precursors. While the phthalimide unit, for a long time, was treated as part of the waste stream. Construction of C-N bonds has always been a hot spot, especially in reductive cross-coupling. Herein, a nickel-catalyzed reductive cross-coupling reaction of N-methoxyphthalimides with alkyl halides is described, where N-methoxyphthalimides serve as nitrogen electrophiles. This tactic provides a new approach to construct C-N bonds under mild neutral conditions. Alkyl chlorides, bromides, iodides, and sulfonates are all fit to this transformation. Moreover, the reaction could tolerate a broad substrate scope, especially base-sensitive functional groups (boron or silicon groups), as well as competitive nucleophilic groups (phenols and amides), which are incompatible with traditional Gabriel synthesis under basic conditions, demonstrating a complementary role of this work to Gabriel synthesis.

12.
Cancer Med ; 13(12): e7384, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895905

ABSTRACT

BACKGROUND: Breast cancer is a heterogeneous disease categorized based on molecular characteristics, including hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) expression levels. The emergence of profiling technology has revealed multiple driver genomic alterations within each breast cancer subtype, serving as biomarkers to predict treatment outcomes. This study aimed to explore the genomic landscape of breast cancer in the Taiwanese population through comprehensive genomic profiling (CGP) and identify diagnostic and predictive biomarkers. METHODS: Targeted next-generation sequencing-based CGP was performed on 116 archived Taiwanese breast cancer specimens, assessing genomic alterations (GAs), including single nucleotide variants, copy number variants, fusion genes, tumor mutation burden (TMB), and microsatellite instability (MSI) status. Predictive variants for FDA-approved therapies were evaluated within each subtype. RESULTS: In the cohort, frequent mutations included PIK3CA (39.7%), TP53 (36.2%), KMT2C (9.5%), GATA3 (8.6%), and SF3B1 (6.9%). All subtypes had low TMB, with no MSI-H tumors. Among HR + HER2- patients, 42% (27/65) harbored activating PIK3CA mutations, implying potential sensitivity to PI3K inhibitors and resistance to endocrine therapies. HR + HER2- patients exhibited intrinsic hormonal resistance via FGFR1 gene gain/amplification (15%), exclusive of PI3K/AKT pathway alterations. Aberrations in the PI3K/AKT/mTOR and FGFR pathways were implicated in chemoresistance, with a 52.9% involvement in triple-negative breast cancer. In HER2+ tumors, 50% harbored GAs potentially conferring resistance to anti-HER2 therapies, including PIK3CA mutations (32%), MAP3K1 (2.9%), NF1 (2.9%), and copy number gain/amplification of FGFR1 (18%), FGFR3 (2.9%), EGFR (2.9%), and AKT2 (2.9%). CONCLUSION: This study presents CGP findings for treatment-naïve Taiwanese breast cancer, emphasizing its value in routine breast cancer management, disease classification, and treatment selection.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Mutation , Humans , Female , Taiwan , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Middle Aged , Biomarkers, Tumor/genetics , Adult , Aged , High-Throughput Nucleotide Sequencing , DNA Copy Number Variations , Genomics/methods , Class I Phosphatidylinositol 3-Kinases/genetics , Microsatellite Instability , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Gene Expression Profiling
13.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38925653

ABSTRACT

AIMS: This study aimed to assess the pharmacokinetic/pharmacodynamic (PK/PD) targets of danofloxacin to minimize the risk of selecting resistant Pasteurella multocida mutants and to identify the mechanisms underlying their resistance in an in vitro dynamic model, attaining the optimum dosing regimen of danofloxacin to improve its clinical efficacy based on the mutant selection window (MSW) hypothesis. METHODS AND RESULTS: Danofloxacin at seven dosing regimens and 5 days of treatment were simulated to quantify the bactericidal kinetics and enrichment of resistant mutants upon continuous antibiotic exposure. The magnitudes of PK/PD targets associated with different efficacies were determined in the model. The 24 h area under the concentration-time curve (AUC) to minimum inhibitory concentration (MIC) ratios (AUC24h/MIC) of danofloxacin associated with bacteriostatic, bactericidal and eradication effects against P. multocida were 34, 52, and 64 h. This translates to average danofloxacin concentrations (Cav) over 24 h being 1.42, 2.17, and 2.67 times the MIC, respectively. An AUC/MIC-dependent antibacterial efficacy and AUC/mutant prevention concentration (MPC)-dependent enrichment of P. multocida mutants in which maximum losses in danofloxacin susceptibility occurred at a simulated AUC24h/MIC ratio of 72 h (i.e. Cav of three times the MIC). The overexpression of efflux pumps (acrAB-tolC) and their regulatory genes (marA, soxS, and ramA) was associated with reduced susceptibility in danofloxacin-exposed P. multocida. The AUC24h/MPC ratio of 19 h (i.e. Cav of 0.8 times the MPC) was determined to be the minimum mutant prevention target value for the selection of resistant P. multocida mutants. CONCLUSIONS: The emergence of P. multocida resistance to danofloxacin exhibited a concentration-dependent pattern and was consistent with the MSW hypothesis. The current clinical dosing regimen of danofloxacin (2.5 mg kg-1) may have a risk of treatment failure due to inducible fluoroquinolone resistance.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Fluoroquinolones , Microbial Sensitivity Tests , Pasteurella multocida , Pasteurella multocida/drug effects , Pasteurella multocida/genetics , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Mutation
14.
Kidney Res Clin Pract ; 43(4): 406-416, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38934037

ABSTRACT

Acute kidney disease (AKD) is a critical transitional period between acute kidney injury and chronic kidney disease. The incidence of AKD following acute kidney injury is approximately 33.6%, and it can occur without identifiable preceding acute kidney injury. The development of AKD is associated with increased risks of chronic kidney disease, dialysis, and mortality. Biomarkers and subphenotypes are promising tools to predict prognosis in AKD. The complex clinical situations in patients with AKD necessitate a comprehensive and structured approach, termed "KAMPS" (kidney function check, advocacy, medications, pressure, sick day protocols). We introduce "MAND-MASS," an acronym devised to summarize the reconciliation of medications during episodes of acute illness, as a critical component of the sick day protocols at AKD. A multidisciplinary team care, consisting of nephrologists, pharmacists, dietitians, health educators, and nurses, is an optimal model to achieve the care bundle in KAMPS. Although the evidence for patients with AKD is still lacking, several potential pharmacological agents may improve outcomes, including but not limited to angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, mineralocorticoid receptor antagonists, sodium-glucose cotransporter 2 inhibitors, and glucagon-like peptide 1 receptor agonists. In conclusion, accurate prognosis prediction and effective treatment for AKD are critical yet unmet clinical needs. Future studies are urgently needed to improve patient care in this complex and rapidly evolving field.

15.
Mol Neurobiol ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850348

ABSTRACT

Dysbiosis of the gut microbiota is closely associated with neurodegenerative diseases, including Huntington's disease (HD). Gut microbiome-derived metabolites are key factors in host-microbiome interactions. This study aimed to investigate the crucial gut microbiome and metabolites in HD and their correlations. Fecal and serum samples from 11 to 26 patients with HD, respectively, and 16 and 23 healthy controls, respectively, were collected. The fecal samples were used for shotgun metagenomics while the serum samples for metabolomics analysis. Integrated analysis of the metagenomics and metabolomics data was also conducted. Firmicutes, Bacteroidota, Proteobacteria, Uroviricota, Actinobacteria, and Verrucomicrobia were the dominant phyla. At the genus level, the presence of Bacteroides, Faecalibacterium, Parabacteroides, Alistipes, Dialister, and Christensenella was higher in HD patients, while the abundance of Lachnospira, Roseburia, Clostridium, Ruminococcus, Blautia, Butyricicoccus, Agathobaculum, Phocaeicola, Coprococcus, and Fusicatenibacter decreased. A total of 244 differential metabolites were identified and found to be enriched in the glycerophospholipid, nucleotide, biotin, galactose, and alpha-linolenic acid metabolic pathways. The AUC value from the integrated analysis (1) was higher than that from the analysis of the gut microbiota (0.8632). No significant differences were found in the ACE, Simpson, Shannon, Sobs, and Chao indexes between HD patients and controls. Our study determined crucial functional gut microbiota and potential biomarkers associated with HD pathogenesis, providing new insights into the role of the gut microbiota-brain axis in HD occurrence and development.

16.
Gastrointest Endosc ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851456

ABSTRACT

BACKGROUND AND AIMS: Despite the benefits of artificial intelligence (AI) in small bowel (SB) capsule endoscopy (CE) image reading, information on its application in the stomach and SB CE is lacking. METHODS: In this multicenter, retrospective diagnostic study, gastric imaging data were added to the deep learning (DL)-based SmartScan (SS), which has been described previously. A total of 1,069 magnetically controlled gastrointestinal (GI) CE examinations (comprising 2,672,542 gastric images) were used in the training phase for recognizing gastric pathologies, producing a new AI algorithm named SS Plus. 342 fully automated, magnetically controlled CE (FAMCE) examinations were included in the validation phase. The performance of both senior and junior endoscopists with both the SS Plus-Assisted Reading (SSP-AR) and conventional reading (CR) modes was assessed. RESULTS: SS Plus was designed to recognize 5 types of gastric lesions and 17 types of SB lesions. SS Plus reduced the number of CE images required for review to 873.90 (1000) (median, IQR 814.50-1,000) versus 44,322.73 (42,393) (median, IQR 31,722.75-54,971.25) for CR. Furthermore, with SSP-AR, endoscopists took 9.54 min (8.51) (median, IQR 6.05-13.13) to complete the CE video reading. In the 342 CE videos, SS Plus identified 411 gastric and 422 SB lesions, whereas 400 gastric and 368 intestinal lesions were detected with CR. Moreover, junior endoscopists remarkably improved their CE image reading ability with SSP-AR. CONCLUSIONS: Our study shows that the newly upgraded DL-based algorithm SS Plus can detect GI lesions and help improve the diagnostic performance of junior endoscopists in interpreting CE videos.

17.
Huan Jing Ke Xue ; 45(6): 3708-3715, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897790

ABSTRACT

In order to evaluate the effect of aging and particle size on the adsorption of heavy metals by microplastics, the adsorption behavior of Cu(Ⅱ) by three different particle sizes of polystyrene (PS; 1, 50, and 100 µm) under UV irradiation was systematically studied. The results demonstrated that UV aging significantly changed the surface morphology and physicochemical properties of PS, and 1 µm PS had the strongest aging degree. The adsorption kinetics of PS on Cu(Ⅱ) conformed to the pseudo-second-order kinetic model, and the Freundlich model was more suitable for the experimental data of isothermal adsorption of Cu(Ⅱ) by PS. These results indicated that the adsorption of Cu(Ⅱ) by PS occurred on the non-uniform surface of PS, and the adsorption behavior was multilayer adsorption. Parameter "n" of the Freundlich model was less than 1, indicating that the adsorption behavior of PS on Cu(Ⅱ) was a higher intensity physical adsorption behavior. The order of theoretical maximum adsorption capacity of different particle sizes PS for Cu(Ⅱ) was as follows:1 µm > 50 µm > 100 µm, indicating that the size of PS was an important influence factor for the adsorption capacity of PS to pollutants. For the same particle size PS, aging enhanced its adsorption capacity for Cu(Ⅱ). The results on the adsorption of Cu(Ⅱ) by PS under different environmental conditions indicated that the adsorption capacity of PS for Cu (II) increased with the increase in pH, whereas an increase in salinity had the opposite effect. Surface complexation and electrical adsorption were the main mechanisms of adsorption of Cu(Ⅱ) by PS. This study provides an important scientific basis for understanding the adsorption behavior of microplastics to heavy metals in the environment.

18.
Dose Response ; 22(2): 15593258241264954, 2024.
Article in English | MEDLINE | ID: mdl-38903205

ABSTRACT

This research investigated the anticancer properties of punicalagin, a prominent bioactive polyphenol extracted from Punica granatum L, in human gastric cancer cell lines. Normal and gastric cancer cells were exposed to different doses of punicalagin for various durations. Punicalagin exhibited cytotoxic effects on gastric cancer cells in a dose- and time-dependent fashion, while sparing normal gastric epithelial cells. It is noteworthy that among the 3 gastric cancer cells, HGC-27 cells were more resistant to punicalagin than 23,132/87 and AGS cells. Furthermore, punicalagin triggered apoptosis in gastric cancer cells, evidenced by a rise in both early and late apoptotic cell percentages. Western blot analysis further revealed that punicalagin elevated the levels of activated caspase-3. Conversely, punicalagin curtailed cell invasion and reduced the expression of MMP-2, MMP-9, Snail, and Slug. From a mechanistic standpoint, Western blotting indicated that punicalagin might inhibit the Erk and NF-κB pathways, leading to apoptosis induction and the inhibition of cell invasion in gastric cancer cells. These results indicate that punicalagin promotes apoptosis and inhibits cell invasion in gastric cancer cells by activating caspase-3 and suppressing MMP-2, MMP-9, Snail, and Slug through the inhibition of the Erk and NF-κB pathways.

19.
Sci Total Environ ; 931: 172938, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703850

ABSTRACT

Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.


Subject(s)
Cadmium , Mitochondria , Pyroptosis , Testis , Animals , Cadmium/toxicity , Male , Mice , Testis/drug effects , Testis/metabolism , Pyroptosis/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Environmental Pollutants/toxicity , Proteostasis , Mitochondrial Proteins/metabolism , Environmental Exposure/adverse effects , DNA, Mitochondrial , ATP-Dependent Proteases/metabolism , Proteotoxic Stress
20.
Dev Biol ; 512: 13-25, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38703942

ABSTRACT

Drosophila melanogaster is an ideal model organism for investigating spermatogenesis due to its powerful genetics, conserved genes and visible morphology of germ cells during sperm production. Our previous work revealed that ocnus (ocn) knockdown resulted in male sterility, and CG9920 was identified as a significantly downregulated protein in fly abdomen after ocn knockdown, suggesting a role of CG9920 in male reproduction. In this study, we found that CG9920 was highly expressed in fly testes. CG9920 knockdown in fly testes caused male infertility with no mature sperms in seminal vesicles. Immunofluorescence staining showed that depletion of CG9920 resulted in scattered spermatid nuclear bundles, fewer elongation cones that did not migrate to the anterior region of the testis, and almost no individualization complexes. Transmission electron microscopy revealed that CG9920 knockdown severely disrupted mitochondrial morphogenesis during spermatogenesis. Notably, we found that CG9920 might not directly interact with Ocn, but rather was inhibited by STAT92E, which itself was indirectly affected by Ocn. We propose a possible novel pathway essential for spermatogenesis in D. melanogaster, whereby Ocn indirectly induces CG9920 expression, potentially counteracting its inhibition by the JAK-STAT signaling pathway.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Mitochondria , Spermatogenesis , Testis , Animals , Spermatogenesis/genetics , Spermatogenesis/physiology , Male , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Mitochondria/metabolism , Testis/metabolism , Morphogenesis/genetics , Signal Transduction , Infertility, Male/genetics , Infertility, Male/metabolism , Gene Knockdown Techniques , STAT Transcription Factors/metabolism , Spermatids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...