Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35160515

ABSTRACT

The strong demand for plastic and polymeric materials continues to grow year after year, making these industries critical to address sustainability. By functioning as a filler in either a synthetic or natural starch matrix, nanoclay enables significant reductions in the impact of nonbiodegradable materials. The effect of treated nanoclay (NC) loading on the mechanical and morphological properties (EP) of epoxy is investigated in this research. The NC-EP nanocomposites were prepared via casting. The investigation begins with adding NC at concentrations of 1, 2, and 3 weight percent, followed by the effect of acid treatment on the same nanocomposites. The evaluation is focused on four mechanical tensile strength parameters: Young's modulus, maximum load, and % elongation. The addition of NC improved the mechanical properties of the four components by 27.2%, 33.38%, 46.98%, and 43.58%, respectively. The acid treatment improved 35.9%, 42.8%, 51.1%, and 83.5%, respectively. These improvements were attributed to NC's ability to alter the structural morphology as assessed by field emission scanning electron microscopy (FESEM), a tool for analysing the microstructure. FESEM images were used to visualise the interaction between the NC and EP nanocomposites. The dynamic mechanical properties of the hybrid nanocomposites were investigated using storage modulus, loss modulus, and tan(delta). The results have shown that the viscoelastic properties improved as the fraction of NC increased. The overall findings suggest that these nanocomposites could be used in various industrial and biomedical applications.

3.
Sustain Cities Soc ; 72: 103046, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34055576

ABSTRACT

In 2019, a novel type of coronavirus emerged in China called SARS-COV-2, known COVID-19, threatens global health and possesses negative impact on people's quality of life, leading to an urgent need for its diagnosis and remedy. On the other hand, the presence of hazardous infectious waste led to the increase of the risk of transmitting the virus by individuals and by hospitals during the COVID-19 pandemic. Hence, in this review, we survey previous researches on nanomaterials that can be effective for guiding strategies to deal with the current COVID-19 pandemic and also decrease the hazardous infectious waste in the environment. We highlight the contribution of nanomaterials that possess potential to therapy, prevention, detect targeted virus proteins and also can be useful for large population screening, for the development of environmental sensors and filters. Besides, we investigate the possibilities of employing the nanomaterials in antiviral research and treatment development, examining the role of nanomaterials in antiviral- drug design, including the importance of nanomaterials in drug delivery and vaccination, and for the production of medical equipment. Nanomaterials-based technologies not only contribute to the ongoing SARS- CoV-2 research efforts but can also provide platforms and tools for the understanding, protection, detection and treatment of future viral diseases.

4.
Carbohydr Polym ; 259: 117613, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33673980

ABSTRACT

A large amount of wastewater is typically discharged into water bodies and has extremely harmful effects to aquatic environments. The removal of heavy metals from water bodies is necessary for the safe consumption of water and human activities. The demand for seafood has considerably increased, and millions of tons of crustacean waste are discarded every year. These waste products are rich in a natural biopolymer known as chitin. The deacetylated form of chitin, chitosan, has attracted attention as an adsorbent. It is a biocompatible and biodegradable polymer that can be modified and converted to various derivatives. This review paper focuses on relevant literature on strategies for chemically modifying the biopolymer and its use in the removal of heavy metals from water and wastewater. The different aspects of chitosan-based derivatives and their preparation and application are elucidated. A list of chitosan-based composites, along with their adsorptivity and experimental conditions, are compiled.

5.
Polymers (Basel) ; 12(2)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32092992

ABSTRACT

In this study, a biodegradable, cheap and durable recycled high-density polyethylene (rHDPE) polymer reinforced with rice husk (RH) fibre was fabricated into a foam structure through several processes, including extrusion, internal mixing and hot pressing. The effect of filler loading on the properties of the foam and the influence of RH surface treatments on the filler-matrix adhesion and mechanical properties of the composite foam were investigated. The morphological examination shows that 50 wt.% filler content resulted in an effective dispersion of cells with the smallest cell size (58.3 µm) and the highest density (7.62 × 1011 sel/cm3). This small cell size benefits the mechanical properties. Results indicate that the tensile strength and the Young's modulus of the alkali-treated RH/rHDPE composite foam are the highest amongst the treatments (10.83 MPa and 858 MPa, respectively), followed by UV/O3, which has shown considerable increments compared with the untreated composite. The flexural and impact tests also show the increment in strength for the composite foam after chemical treatment. Although the UV/O3 surface treatment has minor influence on the mechanical enhancement of the composite foam, this method may be a reliable surface treatment of the fibre-reinforced composite.

6.
PLoS One ; 13(5): e0197345, 2018.
Article in English | MEDLINE | ID: mdl-29847568

ABSTRACT

The use of rice husks (RH) to reinforce polymers in biocomposites are increasing tremendously. However, the incompatibility between the hydrophilic RH fibers and the hydrophobic thermoplastic matrices leads to unsatisfactory biocomposites. Surface modification of the fiber surface was carried out to improve the adhesion between fiber and matrix. In this study, the effect of surface modification of RH via alkali, acid and ultraviolet-ozonolysis (UV/O3) treatments on the properties of composites recycled high density polyethylene (rHDPE) composites was investigated. The untreated and treated RH were characterized by Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM). The composites containing 30 wt% of RH (treated and untreated) were then prepared via extrusion and followed by compression molding. As compared to untreated RH, all surface treated RH exhibited rougher surface and showed improved adhesion with rHDPE matrix. Tensile strength of UV/O3-treated RH composites showed an optimum result at 18.37 MPa which improved about 5% in comparison to the composites filled with untreated RH. UV/O3 treatment promotes shorter processing time and lesser raw material waste during treatment process where this is beneficial for commercialization in the future developments of wood plastic composites (WPCs). Therefore, UV/O3 treatment can be served as an alternative new method to modify RH surface in order to improve the adhesion between hydrophilic RH fibre and hydrophobic rHDPE polymer matrix.


Subject(s)
Oryza , Ozone , Plant Components, Aerial/chemistry , Ultraviolet Rays , Acids/chemistry , Alkalies/chemistry , Materials Testing , Polyethylene/chemistry , Tensile Strength , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...