Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Article in English | WPRIM (Western Pacific) | ID: wpr-1011011

ABSTRACT

Artemisia argyi (A. argyi), a plant with a longstanding history as a raw material for traditional medicine and functional diets in Asia, has been used traditionally to bathe and soak feet for its disinfectant and itch-relieving properties. Despite its widespread use, scientific evidence validating the antifungal efficacy of A. argyi water extract (AAWE) against dermatophytes, particularly Trichophyton rubrum, Trichophyton mentagrophytes, and Microsporum gypseum, remains limited. This study aimed to substantiate the scientific basis of the folkloric use of A. argyi by evaluating the antifungal effects and the underlying molecular mechanisms of its active subfraction against dermatophytes. The results indicated that AAWE exhibited excellent antifungal effects against the three aforementioned dermatophyte species. The subfraction AAWE6, isolated using D101 macroporous resin, emerged as the most potent subfraction. The minimum inhibitory concentrations (MICs) of AAWE6 against T. rubrum, M. gypseum, and T. mentagrophytes were 312.5, 312.5, and 625 μg·mL-1, respectively. Transmission electron microscopy (TEM) results and assays of enzymes linked to cell wall integrity and cell membrane function indicated that AAWE6 could penetrate the external protective barrier of T. rubrum, creating breaches ("small holes"), and disrupt the internal mitochondrial structure ("granary"). Furthermore, transcriptome data, quantitative real-time PCR (RT-qPCR), and biochemical assays corroborated the severe disruption of mitochondrial function, evidenced by inhibited tricarboxylic acid (TCA) cycle and energy metabolism. Additionally, chemical characterization and molecular docking analyses identified flavonoids, primarily eupatilin (131.16 ± 4.52 mg·g-1) and jaceosidin (4.17 ± 0.18 mg·g-1), as the active components of AAWE6. In conclusion, the subfraction AAWE6 from A. argyi exerts antifungal effects against dermatophytes by disrupting mitochondrial morphology and function. This research validates the traditional use of A. argyi and provides scientific support for its anti-dermatophytic applications, as recognized in the Chinese patent (No. ZL202111161301.9).


Subject(s)
Antifungal Agents/chemistry , Arthrodermataceae , Artemisia/chemistry , Molecular Docking Simulation , Mitochondria , Microbial Sensitivity Tests
2.
Animal Model Exp Med ; 5(2): 108-119, 2022 04.
Article in English | MEDLINE | ID: mdl-35412027

ABSTRACT

Inflammation is a common disease involved in the pathogenesis, complications, and sequelae of a large number of related diseases, and therefore considerable research has been directed toward developing anti-inflammatory drugs for the prevention and treatment of these diseases. Traditional Chinese medicine (TCM) has been used to treat inflammatory and related diseases since ancient times. According to the review of abundant modern scientific researches, it is suggested that TCM exhibit anti-inflammatory effects at different levels, and via multiple pathways with various targets, and recently a series of in vitro and in vivo anti-inflammatory models have been developed for anti-inflammation research in TCM. Currently, the reported classic mechanisms of TCM and experimental models of its anti-inflammatory effects provide reference points and guidance for further research and development of TCM. Importantly, the research clearly confirms that TCM is now and will continue to be an effective form of treatment for many types of inflammation and inflammation-related diseases.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Anti-Inflammatory Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Humans , Inflammation/drug therapy , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...