Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38474770

ABSTRACT

Sepsis, a leading cause of death worldwide, is a harmful inflammatory condition that is primarily caused by an endotoxin released by Gram-negative bacteria. Effective targeted therapeutic strategies for sepsis are lacking. In this study, using an in vitro and in vivo mouse model, we demonstrated that CM1, a derivative of the natural polyphenol chrysin, exerts an anti-inflammatory effect by inducing the expression of the ubiquitin-editing protein TNFAIP3 and the NAD-dependent deacetylase sirtuin 1 (SIRT1). Interestingly, CM1 attenuated the Toll-like receptor 4 (TLR4)-induced production of inflammatory cytokines by inhibiting the extracellular-signal-regulated kinase (ERK)/MAPK and nuclear factor kappa B (NF-κB) signalling pathways. In addition, CM1 induced the expression of TNFAIP3 and SIRT1 on TLR4-stimulated primary macrophages; however, the anti-inflammatory effect of CM1 was abolished by the siRNA-mediated silencing of TNFAPI3 or by the genetic or pharmacologic inhibition of SIRT1. Importantly, intravenous administration of CM1 resulted in decreased susceptibility to endotoxin-induced sepsis, thereby attenuating the production of pro-inflammatory cytokines and neutrophil infiltration into the lung compared to control mice. Collectively, these findings demonstrate that CM1 has therapeutic potential for diverse inflammatory diseases, including sepsis.


Subject(s)
Flavonoids , Sepsis , Shock, Septic , Mice , Animals , Sirtuin 1/metabolism , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Shock, Septic/drug therapy , Endotoxins , Cytokines/metabolism , Sepsis/drug therapy , Anti-Inflammatory Agents/therapeutic use
2.
Immune Netw ; 24(1): e4, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38455468

ABSTRACT

TNF, a pleiotropic proinflammatory cytokine, is important for protective immunity and immunopathology during Mycobacterium tuberculosis (Mtb) infection, which causes tuberculosis (TB) in humans. TNF is produced primarily by phagocytes in the lungs during the early stages of Mtb infection and performs diverse physiological and pathological functions by binding to its receptors in a context-dependent manner. TNF is essential for granuloma formation, chronic infection prevention, and macrophage recruitment to and activation at the site of infection. In animal models, TNF, in cooperation with chemokines, contributes to the initiation, maintenance, and clearance of mycobacteria in granulomas. Although anti-TNF therapy is effective against immune diseases such as rheumatoid arthritis, it carries the risk of reactivating TB. Furthermore, TNF-associated inflammation contributes to cachexia in patients with TB. This review focuses on the multifaceted role of TNF in the pathogenesis and prevention of TB and underscores the importance of investigating the functions of TNF and its receptors in the establishment of protective immunity against and in the pathology of TB. Such investigations will facilitate the development of therapeutic strategies that target TNF signaling, which makes beneficial and detrimental contributions to the pathogenesis of TB.

3.
Am J Pathol ; 193(12): 2047-2065, 2023 12.
Article in English | MEDLINE | ID: mdl-37741453

ABSTRACT

Toxoplasma gondii infection in pregnant women may cause fetal anomalies; however, the underlying mechanisms remain unclear. The current study investigated whether T. gondii induces pyroptosis in human placental cells and the underlying mechanisms. Human placental trophoblast (BeWo and HTR-8/SVneo) and amniotic (WISH) cells were infected with T. gondii, and then reactive oxygen species (ROS) production, cathepsin B (CatB) release, inflammasome activation, and pyroptosis induction were evaluated. The molecular mechanisms of these effects were investigated by treating the cells with ROS scavengers, a CatB inhibitor, or inflammasome-specific siRNA. T. gondii infection induced ROS generation and CatB release into the cytosol in placental cells but decreased mitochondrial membrane potential. T. gondii-infected human placental cells and villi exhibited NLRP1, NLRP3, NLRC4, and AIM2 inflammasome activation and subsequent pyroptosis induction, as evidenced by increased expression of ASC, cleaved caspase-1, and mature IL-1ß and gasdermin D cleavage. In addition to inflammasome activation and pyroptosis induction, adverse pregnancy outcome was shown in a T. gondii-infected pregnant mouse model. Administration of ROS scavengers, CatB inhibitor, or inflammasome-specific siRNA into T. gondii-infected cells reversed these effects. Collectively, these findings show that T. gondii induces NLRP1/NLRP3/NLRC4/AIM2 inflammasome-dependent caspase-1-mediated pyroptosis via induction of ROS production and CatB activation in placental cells. This mechanism may play an important role in inducing cell injury in congenital toxoplasmosis.


Subject(s)
Inflammasomes , Toxoplasma , Mice , Animals , Humans , Female , Pregnancy , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Pyroptosis , Trophoblasts/metabolism , Cathepsin B/metabolism , Cathepsin B/pharmacology , Placenta/metabolism , RNA, Small Interfering , Caspases/metabolism , Calcium-Binding Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , NLR Proteins/metabolism
4.
Front Immunol ; 14: 1203756, 2023.
Article in English | MEDLINE | ID: mdl-37261340

ABSTRACT

Itaconate is a crucial anti-infective and anti-inflammatory immunometabolite that accumulates upon disruption of the Krebs cycle in effector macrophages undergoing inflammatory stress. Esterified derivatives of itaconate (4-octyl itaconate and dimethyl itaconate) and its isomers (mesaconate and citraconate) are promising candidate drugs for inflammation and infection. Several itaconate family members participate in host defense, immune and metabolic modulation, and amelioration of infection, although opposite effects have also been reported. However, the precise mechanisms by which itaconate and its family members exert its effects are not fully understood. In addition, contradictory results in different experimental settings and a lack of clinical data make it difficult to draw definitive conclusions about the therapeutic potential of itaconate. Here we review how the immune response gene 1-itaconate pathway is activated during infection and its role in host defense and pathogenesis in a context-dependent manner. Certain pathogens can use itaconate to establish infections. Finally, we briefly discuss the major mechanisms by which itaconate family members exert antimicrobial effects. To thoroughly comprehend how itaconate exerts its anti-inflammatory and antimicrobial effects, additional research on the actual mechanism of action is necessary. This review examines the current state of itaconate research in infection and identifies the key challenges and opportunities for future research in this field.


Subject(s)
Anti-Inflammatory Agents , Inflammation , Humans , Anti-Inflammatory Agents/therapeutic use , Inflammation/metabolism
5.
Parasites Hosts Dis ; 61(2): 138-146, 2023 May.
Article in English | MEDLINE | ID: mdl-37258260

ABSTRACT

Toxoplasma gondii is an intracellular protozoan parasite which can infect most warm-blooded animals and humans. Among the different mouse models, C57BL/6 mice are more susceptible to T. gondii infection compared to BALB/c mice, and this increased susceptibility has been attributed to various factors, including T-cell responses. Dendritic cells (DCs) are the most prominent type of antigen-presenting cells and regulate the host immune response, including the response of T-cells. However, differences in the DC responses of these mouse strains to T. gondii infection have yet to be characterized. In this study, we cultured bone marrow-derived DCs (BMDCs) from BALB/c and C57BL/6 mice. These cells were infected with T. gondii. The activation of the BMDCs was assessed based on the expression of cell surface markers and cytokines. In the BMDCs of both mouse strains, we detected significant increases in the expression of cell surface T-cell co-stimulatory molecules (major histocompatibility complex (MHC) II, CD40, CD80, and CD86) and cytokines (tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-12p40, IL-1ß, and IL-10) from 3 h post-T. gondii infection. The expression of MHC II, CD40, CD80, CD86, IFN-γ, IL-12p40, and IL-1ß was significantly higher in the T. gondii-infected BMDCs obtained from the C57BL/6 mice than in those from the BALB/c mice. These findings indicate that differences in the activation status of the BMDCs in the BALB/c and C57BL/6 mice may account for their differential susceptibility to T. gondii.


Subject(s)
Cytokines , Toxoplasma , Humans , Mice , Animals , Cytokines/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Interleukins/metabolism , CD40 Antigens/metabolism , Tumor Necrosis Factor-alpha/metabolism , Dendritic Cells
6.
Int J Mol Sci ; 23(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36362370

ABSTRACT

Sirtuin 1 (SIRT1) regulates cellular processes by deacetylating non-histone targets, including transcription factors and intracellular signalling mediators; thus, its abnormal activation is closely linked to the pathophysiology of several diseases. However, its function in Toxoplasma gondii infection is unclear. We found that SIRT1 contributes to autophagy activation via the AMP-activated protein kinase (AMPK) and PI3K/AKT signalling pathways, promoting anti-Toxoplasma responses. Myeloid-specific Sirt1-/- mice exhibited an increased cyst burden in brain tissue compared to wild-type mice following infection with the avirulent ME49 strain. Consistently, the intracellular survival of T. gondii was markedly increased in Sirt1-deficient bone-marrow-derived macrophages (BMDMs). In contrast, the activation of SIRT1 by resveratrol resulted in not only the induction of autophagy but also a significantly increased anti-Toxoplasma effect. Notably, SIRT1 regulates the FoxO-autophagy axis in several human diseases. Importantly, the T. gondii-induced phosphorylation, acetylation, and cytosolic translocation of FoxO1 was enhanced in Sirt1-deficient BMDMs and the pharmacological inhibition of PI3K/AKT signalling reduced the cytosolic translocation of FoxO1 in BMDMs infected with T. gondii. Further, the CaMKK2-dependent AMPK signalling pathway is responsible for the effect of SIRT1 on the FoxO3a-autophagy axis and for its anti-Toxoplasma activity. Collectively, our findings reveal a previously unappreciated role for SIRT1 in Toxoplasma infection.


Subject(s)
Toxoplasma , Animals , Humans , Mice , AMP-Activated Protein Kinases/metabolism , Autophagy , Calcium-Calmodulin-Dependent Protein Kinase Kinase , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sirtuin 1/genetics , Toxoplasma/metabolism , Forkhead Transcription Factors/metabolism
7.
Gynecol Obstet Invest ; 87(1): 79-88, 2022.
Article in English | MEDLINE | ID: mdl-35500567

ABSTRACT

OBJECTIVE: In the present study, we attempted to identify the effects of fenofibrate on human cervical cancer cells. METHODS: The cytotoxicity of fenofibrate in cervical cancer cells was determined by Cell Counting Kit-8. Immunoblotting assay was used to determine the protein expression of caspase-3, poly ADP-ribose polymerase cleavage, B-cell lymphoma 2 family protein expression, microtubule-associated protein 1A/1B-light chain 3 (LC3), as well as cyclins and cyclin-dependent kinases. Immunofluorescence imaging was used to determine the expression of cleaved caspase-3 and LC3. Flow cytometry was used to determine cell cycle and apoptosis. RESULTS: We first showed that fenofibrate treatment reduced cell viability in HeLa cervical cancer cells in a dose-dependent manner at 24 h and 48 h. Importantly, fenofibrate-induced cell death was mediated through cell cycle arrest in the G0-G1 phase and caspase-dependent apoptosis. Moreover, fenofibrate also induced autophagy activation in a dose-dependent manner and pharmacological inhibition of autophagy led to increase of sub-G1 phase and caspase-dependent cell death in HeLa cells. CONCLUSION: In conclusion, these data demonstrated that fenofibrate initially induced cell cycle arrest, followed by caspase-3-dependent cell death in cervical cancer HeLa cells. However, fenofibrate also induced autophagy activation, which is closely related to the survival of diverse cancer cells, thus reducing the anticancer effects of fenofibrate. Therefore, the combination of an autophagy inhibitor and fenofibrate might have the potential to become a new therapeutic strategy for cervical cancer.


Subject(s)
Apoptosis , Cell Cycle Checkpoints , Fenofibrate , Uterine Cervical Neoplasms , Caspase 3/metabolism , Female , Fenofibrate/pharmacology , HeLa Cells , Humans , Uterine Cervical Neoplasms/pathology
8.
Parasit Vectors ; 14(1): 603, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34895315

ABSTRACT

BACKGROUND: Trichomonas vaginalis causes lesions on the cervicovaginal mucosa in women; however, its pathogenesis remains unclear. We have investigated the involvement of the endoplasmic reticulum (ER) in the induction of apoptosis by T. vaginalis and its molecular mechanisms in human cervical cancer SiHa cells. METHODS: Apoptosis, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), ER stress response and Bcl-2 family protein expression were evaluated using immunocytochemistry, flow cytometry, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide dye staining and western blotting. RESULTS: Trichomonas vaginalis induced mitochondrial ROS production, apoptosis, the ER stress response and mitochondrial dysfunction, such as MMP depolarization and an imbalance in Bcl-2 family proteins, in SiHa cells in a parasite burden- and infection time-dependent manner. Pretreatment with N-acetyl cysteine (ROS scavenger) or 4-phenylbutyric acid (4-PBA; ER stress inhibitor) significantly alleviated apoptosis, mitochondrial ROS production, mitochondrial dysfunction and ER stress response in a dose-dependent manner. In addition, T. vaginalis induced the phosphorylation of apoptosis signal regulating kinase 1 (ASK1) and c-Jun N-terminal kinases (JNK) in SiHa cells, whereas 4-PBA or SP600125 (JNK inhibitor) pretreatment significantly attenuated ASK1/JNK phosphorylation, mitochondrial dysfunction, apoptosis and ER stress response in SiHa cells, in a dose-dependent manner. Furthermore, T. vaginalis excretory/secretory products also induced mitochondrial ROS production, apoptosis and the ER stress response in SiHa cells, in a time-dependent manner. CONCLUSIONS: Trichomonas vaginalis induces apoptosis through mitochondrial ROS and ER stress responses, and also promotes ER stress-mediated mitochondrial apoptosis via the IRE1/ASK1/JNK/Bcl-2 family protein pathways in SiHa cells. These data suggest that T. vaginalis-induced apoptosis is affected by ROS and ER stress response via ER-mitochondria crosstalk.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Reactive Oxygen Species/metabolism , Signal Transduction , Trichomonas vaginalis/physiology , Uterine Cervical Neoplasms/parasitology , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Female , Humans , Membrane Potential, Mitochondrial , Mitochondria/metabolism
9.
J Cell Mol Med ; 25(19): 9460-9472, 2021 10.
Article in English | MEDLINE | ID: mdl-34464509

ABSTRACT

Fas-associated factor 1 (FAF1) has gained a reputation as a member of the FAS death-inducing signalling complex. However, the role of FAF1 in the immunity response is not fully understood. Here, we report that, in the human retinal pigment epithelial (RPE) cell line ARPE-19 cells, FAF1 expression level was downregulated by Toxoplasma gondii infection, and PI3K/AKT inhibitors reversed T. gondii-induced FAF1 downregulation. In silico analysis for the FAF1 promoter sequence showed the presence of a FOXO response element (FRE), which is a conserved binding site for FOXO1 transcription factor. In accordance with the finding, FOXO1 overexpression potentiated, whereas FOXO1 depletion inhibited intracellular FAF1 expression level. We also found that FAF1 downregulation by T. gondii is correlated with enhanced IRF3 transcription activity. Inhibition of PI3K/AKT pathway with specific inhibitors had no effect on the level of T. gondii-induced IRF3 phosphorylation but blocked IRF3 nuclear import and ISGs transcription. These results suggest that T. gondii can downregulate host FAF1 in PI3K/AKT/FOXO1-dependent manner, and the event is essential for IRF3 nuclear translocation to active the transcription of ISGs and thereby T. gondii proliferation.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Gene Expression Regulation , Host-Parasite Interactions/genetics , Interferon Regulatory Factor-3/metabolism , Toxoplasma/physiology , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Cell Line , Cells, Cultured , Fluorescent Antibody Technique , Forkhead Box Protein O1/metabolism , Humans , Interferon Regulatory Factor-3/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Toxoplasmosis/genetics , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology
10.
Nanomedicine (Lond) ; 16(16): 1357-1375, 2021 07.
Article in English | MEDLINE | ID: mdl-34008419

ABSTRACT

Aim: To investigate the anticancer mechanisms of silver nanoparticles (AgNPs) in colorectal cancer. Methods: Anticancer effects of AgNPs were determined in colorectal cancer HCT116 cells and xenograft mice using cellular and molecular methods. Results: AgNPs induced mitochondrial reactive oxygen species production, mitochondrial dysfunction and endoplasmic reticulum (ER) stress responses through NOX4 and led to HCT116 cell apoptosis. Pretreatment with DPI or 4-PBA significantly inhibited mitochondrial reactive oxygen species production, apoptosis, ER stress response, NOX4 expression and mitochondrial dysfunction in AgNP-treated HCT116 cells. AgNPs also significantly suppressed HCT116 cell-based xenograft tumor growth in nude mice by inducing apoptosis and ER stress responses. Conclusion: AgNPs exert anticancer effects against colorectal cancer via ROS- and ER stress-related mitochondrial apoptosis pathways.


Subject(s)
Colorectal Neoplasms , Metal Nanoparticles , Animals , Apoptosis , Cell Line, Tumor , Cell Survival , Colorectal Neoplasms/drug therapy , Endoplasmic Reticulum Stress , Humans , Mice , Mice, Nude , Mitochondria , NADPH Oxidase 4 , Reactive Oxygen Species , Silver
11.
Microorganisms ; 8(10)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066000

ABSTRACT

Microbial adhesion is critical for parasitic infection and colonization of host cells. To study the host-parasite interaction in vitro, we established a flow cytometry-based assay to measure the adherence of Trichomonas vaginalis to epithelial cell line SiHa. SiHa cells and T. vaginalis were detected as clearly separated, quantifiable populations by flow cytometry. We found that T. vaginalis attached to SiHa cells as early as 30 min after infection and the binding remained stable up to several hours, allowing for analysis of drug treatment efficacy. Importantly, NADPH oxidase inhibitor DPI treatment induced the detachment of T. vaginalis from SiHa cells in a dose-dependent manner without affecting host cell viability. Thus, this study may provide an understanding for the potential development of therapies against T. vaginalis and other parasite infections.

12.
Toxicology ; 442: 152540, 2020 09.
Article in English | MEDLINE | ID: mdl-32717251

ABSTRACT

Silver nanoparticles (AgNPs) have cytotoxic effects on various human cell types. The endoplasmic reticulum (ER) is very sensitive to cytotoxic damage. Retina tissue is easily affected by internal and external stimuli. However, the effect of AgNPs on human retinal cells is not known. This study examined the effect of AgNPs on ER stress induction and their mechanism of action in human retinal pigment epithelium (RPE) ARPE-19 cells. We found that AgNPs significantly increased ARPE-19 cell cytotoxicity and stimulated caspase-3 and poly (ADP-ribose) polymerase (PARP) cleavage, as well as mitochondrial membrane potential (MMP) depolarization, in ARPE-19 cells in a dose-dependent manner (0.2-5 µg/mL for 18 h). AgNPs (5 µg/mL for 18 h) induced several signature ER stress markers, as indicated by the upregulated expressions of CCAAT/enhancer-binding protein-homologous protein (CHOP), phosphorylated protein kinase RNA-like ER kinase (PERK), eukaryotic initiation factor 2α (eIF2α), and inositol-requiring protein 1 (IRE1), and cleaved activating transcription factor 6 (ATF6). AgNPs also activated ASK1 and JNK in ARPE-19 cells, and induced increases in Bax and Puma expressions, as well as a decrease in Mcl-1 expression. However, inhibition of the ER stress response by pretreatment with 4-PBA included apparently and dose-dependently reduced levels of p-PERK, p-IRE1, CHOP, cleaved ATF6, p-ASK1, p-JNK, cleaved caspase-3, procaspase-12, and MMP depolarization in AgNP-treated ARPE-19 cells; it also led to significantly increased Mcl-1 protein levels in a dose-dependent manner in ARPE-19 cells. Pretreatment with JNK inhibitor SP600125 significantly attenuated caspase-3 cleavage and MMP depolarization and increased Mcl-1 protein levels in AgNPs-treated ARPE-19 cells in a dose-dependent manner. Hence, our study demonstrated that AgNPs induced apoptosis in human RPE ARPE-19 cells by ER stress response and ER stress-dependent mitochondrial apoptosis via the IRE1/ASK1/JNK/Mcl-1 pathways.


Subject(s)
Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Metal Nanoparticles/toxicity , Protein Serine-Threonine Kinases/metabolism , Retinal Pigment Epithelium/drug effects , Signal Transduction/drug effects , Silver/toxicity , Caspase 3/metabolism , Cell Death/drug effects , Cell Line , Dose-Response Relationship, Drug , Endoribonucleases/genetics , Enzyme Inhibitors/pharmacology , Epithelial Cells/drug effects , Humans , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Signaling System/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Serine-Threonine Kinases/genetics
13.
Int J Mol Sci ; 21(13)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630319

ABSTRACT

The inflammasome is a large intracellular protein complex that activates inflammatory caspase-1 and induces the maturation of interleukin (IL)-1ß and IL-18. Mitophagy plays an essential role in the maintenance of mitochondrial homeostasis during stress. Previous studies have indicated compelling evidence of the crosstalk between inflammasome and mitophagy. Mitophagy regulation of the inflammasome, or vice versa, is crucial for various biological functions, such as controlling inflammation and metabolism, immune and anti-tumor responses, and pyroptotic cell death. Uncontrolled regulation of the inflammasome often results in pathological inflammation and pyroptosis, and causes a variety of human diseases, including metabolic and inflammatory diseases, infection, and cancer. Here, we discuss how improved understanding of the interactions between inflammasome and mitophagy can lead to novel therapies against various disease pathologies, and how the inflammasome-mitophagy connection is currently being targeted pharmacologically by diverse agents and small molecules. A deeper understanding of the inflammasome-mitophagy connection will provide new insights into human health and disease through the balance between mitochondrial clearance and pathology.


Subject(s)
Inflammasomes/metabolism , Inflammasomes/physiology , Mitophagy/physiology , Animals , Caspase 1/metabolism , Disease , Humans , Immunity/immunology , Inflammation/metabolism , Inflammation/pathology , Interleukin-1beta/metabolism , Mitochondria/metabolism , Mitophagy/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/immunology , Pyroptosis/physiology
14.
Korean J Parasitol ; 58(3): 237-247, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32615737

ABSTRACT

Dendritic cell is one of the first innate immune cell to encounter T. gondii after the parasite crosses the host intestinal epithelium. T. gondii requires intact DC as a carrier to infiltrate into host central nervous system (CNS) without being detected or eliminated by host defense system. The mechanism by which T. gondii avoids innate immune defense of host cell, especially in the dendritic cell is unknown. Therefore, we examined the role of host PI3K/AKT signaling pathway activation by T. gondii in dendritic cell. T. gondii infection or T. gondii excretory/secretory antigen (TgESA) treatment to the murine dendritic cell line DC2.4 induced AKT phosphorylation, and treatment of PI3K inhibitors effectively suppressed the T. gondii proliferation but had no effect on infection rate or invasion rate. Furthermore, it is found that T. gondii or TgESA can reduce H2O2-induced intracellular reactive oxygen species (ROS) as well as host endogenous ROS via PI3K/AKT pathway activation. While searching for the main source of the ROS, we found that NADPH oxidase 4 (NOX4) expression was controlled by T. gondii infection or TgESA treatment, which is in correlation with previous observation of the ROS reduction by identical treatments. These findings suggest that the manipulation of the host PI3K/AKT signaling pathway and NOX4 expression is an essential mechanism for the down-regulation of ROS, and therefore, for the survival and the proliferation of T. gondii.


Subject(s)
Dendritic Cells/metabolism , Host-Parasite Interactions , NADPH Oxidase 4/physiology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/physiology , Toxoplasma/physiology , Animals , Cell Line , Down-Regulation , Humans , Mice
15.
Int J Nanomedicine ; 15: 3695-3716, 2020.
Article in English | MEDLINE | ID: mdl-32547023

ABSTRACT

PURPOSE: External and internal stimuli easily affect the retina. Studies have shown that cells infected with Toxoplasma gondii are resistant to multiple inducers of apoptosis. Nanoparticles (NPs) have been widely used in biomedical fields; however, little is known about cytotoxicity caused by NPs in the retina and the modulators that inhibit nanotoxicity. MATERIALS AND METHODS: ARPE-19 cells from human retinal pigment epithelium were treated with silver nanoparticles (AgNPs) alone or in combination with T. gondii. Then, the cellular toxicity, apoptosis, cell cycle analysis, autophagy, ROS generation, NOX4 expression, and MAPK/mTOR signaling pathways were investigated. To confirm the AgNP-induced cytotoxicity in ARPE-19 cells and its modulatory effects caused by T. gondii infection, the major experiments carried out in ARPE-19 cells were performed again using human foreskin fibroblast (HFF) cells and bone marrow-derived macrophages (BMDMs) from NOX4-/ - mice. RESULTS: AgNPs dose-dependently induced cytotoxicity and cell death in ARPE-19 cells. Apoptosis, sub-G1 phase cell accumulation, autophagy, JNK phosphorylation, and mitochondrial apoptotic features, such as caspase-3 and PARP cleavages, mitochondrial membrane potential depolarization, and cytochrome c release into the cytosol were observed in AgNP-treated cells. AgNP treatment also increased the Bax, Bik, and Bim protein levels as well as NOX4-dependent ROS generation. However, T. gondii-infected ARPE-19 cells inhibited AgNP-induced apoptosis, JNK phosphorylation, sub-G1 phase cell accumulation, autophagy, NOX4-mediated ROS production, and mitochondrial apoptosis. Furthermore, mitochondrial apoptosis was found in AgNP-treated HFF cells and BMDMs, and AgNP-induced mitochondrial apoptosis inhibition via NOX4-dependent ROS suppression in T. gondii pre-infected HFF cells and BMDMs was also confirmed. CONCLUSION: AgNPs induced mitochondrial apoptosis in human RPE cells combined with cell cycle dysregulation and autophagy; however, these effects were significantly inhibited by T. gondii pre-infection by suppression of NOX4-mediated ROS production, suggesting that T. gondii is a strong inhibitory modulator of nanotoxicity in in vitro models.


Subject(s)
Apoptosis/drug effects , Metal Nanoparticles/chemistry , NADPH Oxidase 4/metabolism , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/parasitology , Silver/pharmacology , Toxoplasmosis/pathology , Animals , Autophagy/drug effects , Cell Line , Cell Shape/drug effects , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/parasitology , G1 Phase/drug effects , Humans , MAP Kinase Signaling System/drug effects , Male , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Phosphorylation/drug effects
16.
Article in English | MEDLINE | ID: mdl-32432052

ABSTRACT

The retina is the primary site of Toxoplasma gondii infection in the eye, and choroidal neovascularization in ocular toxoplasmosis is one of the most important causes of visual impairment. Vascular endothelial growth factor (VEGF) is one of the key regulators of blood vessel development, however, little is known about the mechanisms of T. gondii-induced VEGF production in ocular toxoplasmosis. Here, we investigate the effect of T. gondii on VEGF production regulation in human retinal pigment epithelium ARPE-19 cells and attempted to unveil the underlying mechanism of this event by focusing on the interaction between parasite and the selected host intracellular signaling pathways. T. gondii infection increased the expression of VEGF mRNA and protein in ARPE-19 cells in parasite burden- and infection time-dependent manner. The proportional increase of VEGF upstream regulators, HIF-1α and HO-1, was also observed. T. gondii induced the activation of host p-AKT, p-ERK1/2, and p-p38 MAPK in ARPE-19 cells in a parasite-burden dependent manner. However, VEGF expression decreased after the pre-treatment with PI3K inhibitors (LY294002 and GDC-0941), ERK1/2 inhibitor (PD098059), and p38 MAPK inhibitor (SB203580), but not JNK inhibitor (SP600125), in a dose-dependent manner. The anti-VEGF agent bevacizumab or VEGF siRNA transfection prominently inhibited the activation of p-AKT and p-ERK1/2, but not p-p38 MAPK and JNK1/2 in T. gondii-infected ARPE-19 cells. Bevacizumab treatment or VEGF siRNA transfection significantly inhibited the proliferation of T. gondii tachyzoites in the host cell, dose-dependently, but not invasion of parasites. VEGF-receptor 2 (VEGF-R2) antagonist, SU5416, attenuated VEGF production and tachyzoite proliferation in T. gondii-infected ARPE-19 cells in a dose-dependent manner. Collectively, T. gondii prominently induces VEGF production in ARPE-19 cells, and VEGF and AKT/ERK1/2 signaling pathways mutually regulate each other in T. gondii-infected ARPE-19 cells, but not p38 MAPK and JNK1/2 signaling pathways. VEGF and VEGF-R2 control the parasite proliferation in T. gondii-infected ARPE-19 cells. From this study, we revealed the putative mechanisms for VEGF induction as well as the existence of positive feedback between VEGF and PI3K/MAPK signaling pathways in T. gondii-infected retinal pigment epithelium.


Subject(s)
Toxoplasma , Cell Proliferation , Humans , MAP Kinase Signaling System , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Toxoplasma/metabolism , Vascular Endothelial Growth Factor A
17.
Korean J Parasitol ; 58(1): 7-14, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32145722

ABSTRACT

Toxoplasma gondii is an intracellular protozoan parasite that infects approximately one third of the human popu- lation worldwide. Considering the toxicity and side effects of anti-toxoplasma medications, it is important to develop effec- tive drug alternatives with fewer and less severe off-target effects. In this study, we found that 4-hydroxybenzaldehyde (4- HBA) induced autophagy and the expression of NAD-dependent protein deacetylase sirtuin-1 (SIRT1) in primary murine bone marrow-derived macrophages (BMDMs). Interestingly, treatment of BMDMs with 4-HBA significantly reduced the number of macrophages infected with T. gondii and the proliferation of T. gondii in infected cells. This effect was impaired by pretreating the macrophages with 3-methyladenine or wortmannin (selective autophagy inhibitors) or with sirtinol or EX527 (SIRT1 inhibitors). Moreover, we found that pharmacological inhibition of SIRT1 prevented 4-HBA-mediated expres- sion of LC3-phosphatidylethanolamine conjugate (LC3-II) and the colocalization of T. gondii parasitophorous vacuoles with autophagosomes in BMDMs. These data suggest that 4-HBA promotes antiparasitic host responses by activating SIRT1- mediated autophagy, and 4-HBA might be a promising therapeutic alternative for the treatment of toxoplasmosis.


Subject(s)
Autophagy , Benzaldehydes/pharmacology , Macrophages/physiology , Sirtuin 1 , Toxoplasma/growth & development , Animals , Cells, Cultured , Depression, Chemical , Mice, Inbred C57BL
18.
Int Immunopharmacol ; 78: 106072, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31835082

ABSTRACT

Although the novel resveratrol derivative RM has therapeutic potential for the treatment of inflammatory bowel disease, little is currently known regarding the manner whereby RM regulates excessive inflammatory responses. In this study, we initially investigated the molecular mechanisms underlying the anti-inflammatory effects induced by RM in Toll-like receptor (TLR)-activated macrophages. Upon stimulation with lipopolysaccharide, we found that RM-treated activated macrophages down-regulated the increase in pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß, and IL-12p70), nitric oxide (NO) production, and activating interleukin-1 receptor-associated kinase 1 (IRAK-1) phosphorylation, mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. Interestingly, the TLR negative regulator Toll-interacting protein (Tollip) was selectively enhanced during RM stimulation in time- and dose-dependent manners. In response to knockdown of Tollip expression by RNA interference, RM-treated activated macrophages showed augmented expression of inflammatory mediators (pro-inflammatory cytokines, NO, inducible nitric oxidase, and cyclooxygenase-2, and surface molecules) and restored the expression of MAPK and NF-κB signals inhibited by RM treatment. Taken together, our findings indicate that RM has therapeutic potential for treating TLR-induced inflammatory diseases via the promotion of Tollip expression.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/drug effects , Resveratrol/pharmacology , Animals , Anti-Inflammatory Agents/radiation effects , Anti-Inflammatory Agents/therapeutic use , Down-Regulation/drug effects , Drug Evaluation, Preclinical , Gamma Rays , Gene Knockdown Techniques , Inflammation/immunology , Inflammation Mediators/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Lipopolysaccharides/immunology , Macrophage Activation/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Primary Cell Culture , RAW 264.7 Cells , Resveratrol/analogs & derivatives , Resveratrol/radiation effects , Resveratrol/therapeutic use , Signal Transduction/drug effects , Signal Transduction/immunology , Toll-Like Receptors/metabolism , Up-Regulation
19.
Nutrients ; 11(9)2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31500218

ABSTRACT

Omega-3 polyunsaturated fatty acids (ω3-PUFAs) have potential protective activity in a variety of infectious diseases, but their actions and underlying mechanisms in Toxoplasma gondii infection remain poorly understood. Here, we report that docosahexaenoic acid (DHA) robustly induced autophagy in murine bone marrow-derived macrophages (BMDMs). Treatment of T. gondii-infected macrophages with DHA resulted in colocalization of Toxoplasma parasitophorous vacuoles with autophagosomes and reduced intracellular survival of T. gondii. The autophagic and anti-Toxoplasma effects induced by DHA were mediated by AMP-activated protein kinase (AMPK) signaling. Importantly, BMDMs isolated from Fat-1 transgenic mice, a well-known animal model capable of synthesizing ω3-PUFAs from ω6-PUFAs, showed increased activation of autophagy and AMPK, leading to reduced intracellular survival of T. gondii when compared with wild-type BMDMs. Moreover, Fat-1 transgenic mice exhibited lower cyst burden in the brain following infection with the avirulent strain ME49 than wild-type mice. Collectively, our results revealed mechanisms by which endogenous ω3-PUFAs and DHA control T. gondii infection and suggest that ω3-PUFAs might serve as therapeutic candidate to prevent toxoplasmosis and infection with other intracellular protozoan parasites.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antiparasitic Agents/pharmacology , Autophagy/drug effects , Docosahexaenoic Acids/pharmacology , Macrophages/drug effects , Toxoplasma/drug effects , Toxoplasmosis, Animal/prevention & control , Toxoplasmosis, Cerebral/prevention & control , Animals , Brain/drug effects , Brain/enzymology , Brain/parasitology , Brain/pathology , Cadherins/genetics , Cadherins/metabolism , Cell Line , Disease Models, Animal , Enzyme Activation , Humans , Macrophages/enzymology , Macrophages/parasitology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/enzymology , Retinal Pigment Epithelium/parasitology , Signal Transduction , Toxoplasma/pathogenicity , Toxoplasmosis, Animal/enzymology , Toxoplasmosis, Animal/parasitology , Toxoplasmosis, Animal/pathology , Toxoplasmosis, Cerebral/enzymology , Toxoplasmosis, Cerebral/parasitology , Toxoplasmosis, Cerebral/pathology
20.
Korean J Parasitol ; 57(2): 83-92, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31104400

ABSTRACT

Based on the reactive oxygen species (ROS) regulatory properties of diphenyleneiodonium (DPI), we investigated the effects of DPI on host-infected T. gondii proliferation and determined specific concentration that inhibit the intracellular parasite growth but without severe toxic effect on human retinal pigment epithelial (ARPE-19) cells. As a result, it is observed that host superoxide, mitochondria superoxide and H2O2 levels can be increased by DPI, significantly, followed by suppression of T. gondii infection and proliferation. The involvement of ROS in anti-parasitic effect of DPI was confirmed by finding that DPI effect on T. gondii can be reversed by ROS scavengers, N-acetyl-L-cysteine and ascorbic acid. These results suggest that, in ARPE-19 cell, DPI can enhance host ROS generation to prevent T. gondii growth. Our study showed DPI is capable of suppressing T. gondii growth in host cells while minimizing the un-favorite side-effect to host cell. These results imply that DPI as a promising candidate material for novel drug development that can ameliorate toxoplasmosis based on ROS regulation.


Subject(s)
Antiprotozoal Agents/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/parasitology , Immunologic Factors/pharmacology , Onium Compounds/pharmacology , Reactive Oxygen Species/metabolism , Toxoplasma/growth & development , Antiprotozoal Agents/toxicity , Cell Line , Epithelial Cells/physiology , Humans , Immunologic Factors/toxicity , Onium Compounds/toxicity , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/parasitology , Toxoplasma/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...