Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(2): 1484-1508, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36630286

ABSTRACT

With increasing reports of resistance to artemisinins and artemisinin-combination therapies, targeting the Plasmodium proteasome is a promising strategy for antimalarial development. We recently reported a highly selective Plasmodium falciparum proteasome inhibitor with anti-malarial activity in the humanized mouse model. To balance the permeability of the series of macrocycles with other drug-like properties, we conducted further structure-activity relationship studies on a biphenyl ether-tethered macrocyclic scaffold. Extensive SAR studies around the P1, P3, and P5 groups and peptide backbone identified compound TDI-8414. TDI-8414 showed nanomolar antiparasitic activity, no toxicity to HepG2 cells, high selectivity against the Plasmodium proteasome over the human constitutive proteasome and immunoproteasome, improved solubility and PAMPA permeability, and enhanced metabolic stability in microsomes and plasma of both humans and mice.


Subject(s)
Antimalarials , Plasmodium , Humans , Animals , Mice , Antimalarials/pharmacology , Antimalarials/chemistry , Proteasome Endopeptidase Complex/metabolism , Structure-Activity Relationship , Plasmodium falciparum/metabolism , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry
2.
Bioorg Med Chem ; 79: 117150, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36640594

ABSTRACT

N-Methyl-D-aspartate receptors (NMDARs) are key regulators of synaptic plasticity in the central nervous system. Potentiation of NMDARs containing GluN2A subunit has been recently recognized as a promising therapeutic approach for neurological disorders. We identified a novel series of GluN2A positive allosteric modulator (PAM) with a pyridin-2-one scaffold. Initial lead compound 1 was discovered through in silico-based screening of virtual ligands with various monocyclic scaffolds. GluN2A PAM activity was increased by introduction of a methyl group at the 6-position of the pyridin-2-one ring and a cyano group in the side chain. Modification of the aromatic ring led to the identification of potent and brain-penetrant 6-methylpyridin-2-one 17 with a negligible binding activity for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Oral administration of 17 significantly enhanced rat hippocampal long-term potentiation (LTP). Thus, 17 would be a useful in vivo pharmacological tool to investigate complex NMDAR functions for the discovery of therapeutics toward diseases associated with NMDAR dysfunction.


Subject(s)
Cognitive Dysfunction , Receptors, N-Methyl-D-Aspartate , Rats , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Hippocampus/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism
3.
J Med Chem ; 65(13): 9350-9375, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35727231

ABSTRACT

With over 200 million cases and close to half a million deaths each year, malaria is a threat to global health, particularly in developing countries. Plasmodium falciparum, the parasite that causes the most severe form of the disease, has developed resistance to all antimalarial drugs. Resistance to the first-line antimalarial artemisinin and to artemisinin combination therapies is widespread in Southeast Asia and is emerging in sub-Saharan Africa. The P. falciparum proteasome is an attractive antimalarial target because its inhibition kills the parasite at multiple stages of its life cycle and restores artemisinin sensitivity in parasites that have become resistant through mutation in Kelch K13. Here, we detail our efforts to develop noncovalent, macrocyclic peptide malaria proteasome inhibitors, guided by structural analysis and pharmacokinetic properties, leading to a potent, species-selective, metabolically stable inhibitor.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Drug Resistance , Humans , Malaria, Falciparum/drug therapy , Peptides/therapeutic use , Plasmodium falciparum , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Protozoan Proteins/genetics
4.
Bioorg Med Chem ; 56: 116576, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35051811

ABSTRACT

N-Methyl-d-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family and play a crucial role in learning and memory by regulating synaptic plasticity. Activation of NMDARs containing GluN2A, one of the NMDAR subunits, has recently attracted attention as a promising therapeutic approach for neuropsychiatric diseases such as schizophrenia, depression, and epilepsy. In the present study, we developed potent and brain-penetrable GluN2A-selective positive allosteric modulators. Lead compound 2b was generated by scaffold hopping of hit compound 1, identified from the internal alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-focused compound library through a high-throughput screening campaign. Subsequent optimization of the lead compound, including a structure-based drug design approach, resulted in the identification of a potent GluN2A PAM (R)-9, which possessed high selectivity against both subtypes of AMPAR and NMDAR. Furthermore, (R)-9 significantly enhanced long-term potentiation in the rat hippocampus 24 h after oral administration, indicating that this molecule is a potentially useful in vivo pharmacological tool for treating psychiatric diseases.


Subject(s)
Brain/metabolism , Drug Discovery , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Administration, Oral , Allosteric Regulation/drug effects , Animals , Binding Sites/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Injections, Intravenous , Male , Molecular Docking Simulation , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
5.
J Med Chem ; 64(9): 6262-6272, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33949190

ABSTRACT

Treatment of tuberculosis (TB) currently takes at least 6 months. Latent Mycobacterium tuberculosis (Mtb) is phenotypically tolerant to most anti-TB drugs. A key hypothesis is that drugs that kill nonreplicating (NR) Mtb may shorten treatment when used in combination with conventional drugs. The Mtb proteasome (Mtb20S) could be such a target because its pharmacological inhibition kills NR Mtb and its genetic deletion renders Mtb unable to persist in mice. Here, we report a series of macrocyclic peptides that potently and selectively target the Mtb20S over human proteasomes, including macrocycle 6. The cocrystal structure of macrocycle 6 with Mtb20S revealed structural bases for the species selectivity. Inhibition of 20S within Mtb by 6 dose dependently led to the accumulation of Pup-tagged GFP that is degradable but resistant to depupylation and death of nonreplicating Mtb under nitrosative stress. These results suggest that compounds of this class have the potential to develop as anti-TB therapeutics.


Subject(s)
Mycobacterium tuberculosis/enzymology , Peptides, Cyclic/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Design , Humans , Mycobacterium tuberculosis/drug effects , Peptides, Cyclic/chemistry , Structure-Activity Relationship
6.
Angew Chem Int Ed Engl ; 60(17): 9279-9283, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33433953

ABSTRACT

Plasmodium falciparum proteasome (Pf20S) inhibitors are active against Plasmodium at multiple stages-erythrocytic, gametocyte, liver, and gamete activation stages-indicating that selective Pf20S inhibitors possess the potential to be therapeutic, prophylactic, and transmission-blocking antimalarials. Starting from a reported compound, we developed a noncovalent, macrocyclic peptide inhibitor of the malarial proteasome with high species selectivity and improved pharmacokinetic properties. The compound demonstrates specific, time-dependent inhibition of the ß5 subunit of the Pf20S, kills artemisinin-sensitive and artemisinin-resistant P. falciparum isolates in vitro and reduces parasitemia in humanized, P. falciparum-infected mice.


Subject(s)
Antimalarials/pharmacology , Drug Development , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Malaria, Falciparum/metabolism , Mice , Models, Molecular , Molecular Conformation , Parasitic Sensitivity Tests , Plasmodium falciparum/enzymology , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry
7.
Bioorg Med Chem ; 28(7): 115376, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32088125

ABSTRACT

Sphingomyelin synthase 2 (SMS2) has attracted attention as a drug target for the treatment of various cardiovascular and metabolic diseases. The modification of a high throughput screening hit, 2-quinolone 10, enhanced SMS2 inhibition at nanomolar concentrations with good selectivity against SMS1. To improve the pharmaceutical properties such as passive membrane permeability and aqueous solubility, adjustment of lipophilicity was attempted and 1,8-naphthyridin-2-one 37 was identified as a potent and selective SMS2 inhibitor. A significant reduction in hepatic sphingomyelin levels following repeated treatment in mice suggested that compound 37 could be an effective in vivo tool for clarifying the role of SMS2 enzyme and developing the treatment for SMS2-related diseases.


Subject(s)
Transferases (Other Substituted Phosphate Groups)/antagonists & inhibitors , Animals , Cell Line , Drug Discovery , Enzyme Inhibitors , Humans , Male , Mice
8.
Org Lett ; 21(18): 7254-7257, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31490083

ABSTRACT

The direct monofluorination of N-protected pyridone derivatives has been developed using a stable electrophilic fluorinating reagent, N-fluorobenzenesulfonimide (NFSI). Interestingly, the fluorine atom is regioselectively introduced at the position opposite the carbonyl group in the pyridone substrate during the reaction. This method is applicable to a wide range of substrates and allows the regioselective late-stage monofluorination of pyridone scaffolds.

9.
SAGE Open Med ; 5: 2050312117726196, 2017.
Article in English | MEDLINE | ID: mdl-28856006

ABSTRACT

OBJECTIVE: This study was conducted to examine the effects of an approach that wears finger rings on elderly females with behavioral and psychological symptoms of dementia. METHOD: The subjects were seven Japanese dementia patients living in elderly nursing homes. A single-case experimental design was adopted for the study. Each study subject was asked to put rings on her finger (from 9:00 to 19:00) for 7 days. The Neuropsychiatric Inventory, scenes of behavioral and psychological symptoms of dementia, interest in wearing rings, self-awareness, and overall profile were determined to assess the effect on the patients of wearing rings. RESULTS: The majority of nursing care providers stated, based on their assessment, that the "irritability/lability" that was noted during the baseline period disappeared during the ring-wearing intervention period in the three patients who displayed an interest in rings. In the assessment of the self-awareness ability, these three women were aware themselves of their intellect collapsing and were capable of conjecturing their own and others' minds. It was commonly seen that the nursing staff, even though they had not been asked to do so by the researchers, told the patients, "Mrs. XX, you look so beautiful" when they found a patient wearing rings. DISCUSSION/CONCLUSION: Individuals with low self-esteem are inclined to get angry and display aggression. In subjects with low self-esteem, anger and aggression readily arise when they are slighted by others. Self-esteem is low in those women who are aware of their own status of collapsing intellect. It is concluded that the words of conjuration, "you look so beautiful," which the wearing of the ring per se by the patient elicited from the caregivers heightened the self-esteem and alleviated "irritability/lability" in the study subjects.

10.
Bioorg Med Chem ; 24(11): 2466-75, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27117263

ABSTRACT

A high-throughput screening campaign helped us to identify an initial lead compound (1) as a protein kinase C-θ (PKCθ) inhibitor. Using the docking model of compound 1 bound to PKCθ as a model, structure-based drug design was employed and two regions were identified that could be explored for further optimization, i.e., (a) a hydrophilic region around Thr442, unique to PKC family, in the inner part of the hinge region, and (b) a lipophilic region at the forefront of the ethyl moiety. Optimization of the hinge binder led us to find 1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one as a potent and selective hinge binder, which resulted in the discovery of compound 5. Filling the lipophilic region with a suitable lipophilic substituent boosted PKCθ inhibitory activity and led to the identification of compound 10. The co-crystal structure of compound 10 bound to PKCθ confirmed that both the hydrophilic and lipophilic regions were fully utilized. Further optimization of compound 10 led us to compound 14, which demonstrated an improved pharmacokinetic profile and inhibition of IL-2 production in a mouse.


Subject(s)
Drug Discovery , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Animals , Dose-Response Relationship, Drug , Female , Humans , Mice , Mice, Inbred BALB C , Molecular Structure , Protein Kinase C/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship
11.
J Am Chem Soc ; 132(34): 11988-92, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20690698

ABSTRACT

The catalytic asymmetric aza-Morita-Baylis-Hillman reaction using unactivated methyl acrylate is described. A simple Lewis acidic metal catalyst, such as La(OTf)(3), was not suitable for the reaction, but rare earth metal alkoxide/linked-BINOL complexes possessing bifunctional Lewis acid and Brønsted base properties efficiently promoted the reaction in combination with an achiral nucleophilic organocatalyst. The combined use of a La(O-iPr)(3)/(S,S)-TMS-linked-BINOL complex with a catalytic amount of DABCO promoted the aza-Morita-Baylis-Hillman reaction of a broad range of N-diphenylphosphinoyl imines. Products from aryl, heteroaryl, and alkenyl imines were obtained in 67-99% yield and 81-95% ee. It is noteworthy that isomerizable alkyl imines could be employed as well, giving products in 78-89% yield and 94-98% ee. Initial rate kinetic studies as well as kinetic isotope effect experiments using alpha-deuterio-methyl acrylate support the importance of both the nucleophilicity of La-enolate and the Brønsted basicity of a La-catalyst for promoting the reaction.


Subject(s)
Acrylates/chemistry , Coordination Complexes/chemistry , Imines/chemical synthesis , Naphthols/chemistry , Organometallic Compounds/chemistry , Catalysis , Imines/chemistry , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...