Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 17(1): e202300958, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37707171

ABSTRACT

Abio/bio hybrids, which incorporate biocatalysts that promote efficient and selective material conversions under mild conditions into existing catalytic reactions, have attracted considerable attention for developing new catalytic systems. This study constructed a H2 -forming biocathode based on a carbon material combined with whole-cell biocatalysis of genetically-engineered-hydrogenase-overproducing Escherichia coli for the photoelectrochemical water splitting for clean H2 production. Low-cost and abundant carbon materials are generally not suitable for H2 -forming cathode due to their high overpotential for proton reduction; however, the combination of the reduction of an organic electron mediator on the carbon electrode and the H2 formation with the reduced mediator by the redox enzyme hydrogenase provides a H2 -forming cathodic reaction comparable to that of the noble metal electrode. The present study demonstrates that the recombinant E. coli whole cell can be employed as a part of the H2 -forming biocathode system, and the biocathode system wired with TiO2 photoanode can be a photoelectrochemical water-splitting system without external voltage assistance under natural pH. The findings of this study expand the feasibility of applications of whole-cell biocatalysis and contribute to obtaining solar-to-chemical conversions by abio/bio hybrid systems, especially for low-cost, noble-metal-free, and clean H2 production.


Subject(s)
Escherichia coli , Hydrogenase , Biocatalysis , Escherichia coli/metabolism , Hydrogen/chemistry , Hydrogenase/chemistry , Carbon , Electrodes , Water/chemistry
2.
PLoS One ; 10(12): e0145113, 2015.
Article in English | MEDLINE | ID: mdl-26658727

ABSTRACT

As a large, long-term pool and source of carbon and nutrients, woody litter is an important component of forest ecosystems. The objective of this study was to estimate the effect of the factors that regulate the rate of decomposition of coarse and fine woody debris (CFWD) of dominant tree species in a cool-temperate forest in Japan. Respiration rates of dead stems, branches, and coarse and fine roots of Fagus crenata and Quercus crispula felled 4 years prior obtained in situ ranged from 20.9 to 500.1 mg CO2 [kg dry wood](-1) h(-1) in a one-time measurement in summer. Respiration rate had a significant negative relationship with diameter; in particular, that of a sample of Q. crispula with a diameter of >15 cm and substantial heartwood was low. It also had a significant positive relationship with moisture content. The explanatory variables diameter, [N], wood density, and moisture content were interrelated. The most parsimonious path model showed 14 significant correlations among 8 factors and respiration. Diameter and [C] had large negative direct effects on CFWD respiration rate, and moisture content and species had medium positive direct effects. [N] and temperature did not have direct or indirect effects, and position and wood density had indirect effects. The model revealed some interrelationships between controlling factors. We discussed the influence of the direct effects of explanatory variables and the influence especially of species and position. We speculate that the small R2 value of the most parsimonious model was probably due to the omission of microbial biomass and activity. These direct and indirect effects and interrelationships between explanatory variables could be used to develop a process-based CFWD decomposition model.


Subject(s)
Fagus/metabolism , Quercus/metabolism , Wood/metabolism , Carbon Dioxide/metabolism , Japan , Seasons , Temperature , Water/chemistry , Wood/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...