Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21266924

ABSTRACT

BackgroundUnderstanding the host genetic architecture and viral immunity contributes to the development of effective vaccines and therapeutics for controlling the COVID-19 pandemic. Alterations of immune responses in peripheral blood mononuclear cells play a crucial role in the detrimental progression of COVID-19. However, the effects of host genetic factors on immune responses for severe COVID-19 remain largely unknown. MethodsWe constructed a powerful computational framework to characterize the host genetics-influenced immune cell subpopulations for severe COVID-19 by integrating GWAS summary statistics (N = 969,689 samples) with four independent scRNA-seq datasets (N = 606,534 cells). ResultsWe found that 34 risk genes were significantly associated with severe COVID-19, and the number of highly-expressed genetics-risk genes increased with the severity of COVID-19. Three cell-subtypes that are CD16+monocytes, megakaryocytes, and memory CD8+T cells were significantly enriched by COVID-19-related genetic association signals. Notably, three causal risk genes of CCR1, CXCR6, and ABO were specifically expressed in these three cell types, respectively. CCR1+CD16+monocytes and ABO+ megakaryocytes with significant up-regulated genes including S100A12, S100A8, S100A9, and IFITM1 confer higher risk to the cytokine storms among severe patients. CXCR6+ memory CD8+ T cells exhibit a notable polyfunctionality of multiple immunologic features, including elevation of proliferation, migration, and chemotaxis. Moreover, we observed a prominent increase in cell-cell interactions of both CCR1+ CD16+monocytes and CXCR6+ memory CD8+T cells in severe patients compared to normal controls among both PBMCs and lung tissues, and elevated interactions with epithelial cells could contribute to enhance the resident to lung airway for against COVID-19 infection. ConclusionsWe uncover a major genetics-modulated immunological shift between mild and severe infection, including an increase in up-regulated genetic-risk genes, excessive secreted inflammatory cytokines, and functional immune cell subsets contributing high risk to severity, which provides novel insights in parsing the host genetics-influenced immune cells for severe COVID-19.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20195685

ABSTRACT

The systematic identification of host genetic risk factors is essential for the understanding and treatment of COVID-19. By performing a meta-analysis of two independent genome-wide association (GWAS) summary datasets (N = 680,128), a novel locus at 21q22.11 was identified to be associated with COVID-19 infection (rs9976829 in IFNAR2 and upstream of IL10RB, OR = 1.16, 95% CI = 1.09 - 1.23, P = 2.57x10-6). The rs9976829 represents a strong splicing quantitative trait locus (sQTL) for both IFNAR2 and IL10RB genes, especially in lung tissue (P 1.8x10-24). Gene-based association analysis also found IFNAR2 was significantly associated with COVID-19 infection (P = 2.58x10-7). Integrative genomics analysis of combining GWAS with eQTL data showed the expression variations of IFNAR2 and IL10RB have prominent effects on COVID-19 in various types of tissues, especially in lung tissue. The majority of IFNAR2-expressing cells were dendritic cells (40%) and plasmacytoid dendritic cells (38.5%), and IL10RB-expressing cells were mainly nonclassical monocytes (29.6%). IFNAR2 and IL10RB are targeted by several interferons-related drugs. Together, our results uncover 21q22.11 as a novel susceptibility locus for COVID-19, in which individuals with G alleles of rs9976829 have a higher probability of COVID-19 susceptibility than those with non-G alleles.

SELECTION OF CITATIONS
SEARCH DETAIL
...