Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(2)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31936587

ABSTRACT

Gold nanoparticles (GNPs) have demonstrated significant dose enhancement with kilovoltage (kV) X-rays; however, recent studies have shown inconsistent findings with megavoltage (MV) X-rays. We propose to evaluate the radiosensitization effect on U87 glioblastoma (GBM) cells in the presence of 42 nm GNPs and irradiated with a clinical 6 MV photon beam. Cytotoxicity and radiosensitization were measured using MTS and clonogenic cellular radiation sensitivity assays, respectively. The sensitization enhancement ratio was calculated for 2 Gy (SER2Gy) with GNP (100 µg/mL). Dark field and MTS assays revealed high co-localization and good biocompatibility of the GNPs with GBM cells. A significant sensitization enhancement of 1.45 (p = 0.001) was observed with GNP 100 µg/mL. Similarly, at 6 Gy, there was significant difference in the survival fraction between the GBM alone group (mean (M) = 0.26, standard deviation (SD) = 0.008) and the GBM plus GNP group (M = 0.07, SD = 0.05, p = 0.03). GNPs enabled radiosensitization in U87 GBM cells at 2 Gy when irradiated using a clinical platform. In addition to the potential clinical utility of GNPs, these studies demonstrate the effectiveness of a robust and easy to standardize an in-vitro model that can be employed for future studies involving metal nanoparticle plus irradiation.


Subject(s)
Electricity , Glioblastoma/radiotherapy , Gold/pharmacology , Metal Nanoparticles/chemistry , Radiation-Sensitizing Agents/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Clone Cells , Humans , Metal Nanoparticles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...