Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Geohealth ; 8(7): e2024GH001014, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962697

ABSTRACT

Indonesia faces significant air quality issues due to multiple emissions sources, including rapid urbanization and peatland fires associated with agricultural land management. Limited prior research has estimated the episodic shock of intense fires on morbidity and mortality in Indonesia but has largely ignored the impact of poor air quality throughout the year on biomarkers of cardiovascular disease risk. We conducted a cross-sectional study of the association between particulate matter less than 2.5 microns in diameter (PM2.5) and blood pressure. Blood pressure measurements were obtained from the fifth wave of the Indonesian Family Life Survey (IFLS5), an ongoing population-based socioeconomic and health survey. We used the GEOS-Chem chemical transport model to simulate daily PM2.5 concentrations at 0.5° × 0.625° resolution across the IFLS domain. We assessed the association between PM2.5 and diastolic and systolic blood pressure, using mixed effects models with random intercepts for regency/municipality and household and adjusted for individual covariates. An interquartile range increase in monthly PM2.5 exposure was associated with a 0.234 (95% CI: 0.003, 0.464) higher diastolic blood pressure, with a greater association seen in participants age 65 and over (1.16 [95% CI: 0.24, 2.08]). For the same exposure metric, there was a 1.90 (95% CI: 0.43, 3.37) higher systolic blood pressure in participants 65 and older. Our assessment of fire-specific PM2.5 yielded null results, potentially due to the timing and locations of health data collection. To our knowledge, this is the first study to provide evidence for an association between PM2.5 and blood pressure in Indonesia.

2.
PLoS One ; 17(9): e0274433, 2022.
Article in English | MEDLINE | ID: mdl-36107927

ABSTRACT

Smoke haze due to vegetation and peatland fires in Southeast Asia is a serious public health concern. Several approaches have been applied in previous studies; however, the concepts and interpretations of these approaches are poorly understood. In this scoping review, we addressed issues related to the application of epidemiology (EPI), health burden estimation (HBE), and health risk assessment (HRA) approaches, and discussed the interpretation of findings, and current research gaps. Most studies reported an air quality index exceeding the 'unhealthy' level, especially during smoke haze periods. Although smoke haze is a regional issue in Southeast Asia, studies on its related health effects have only been reported from several countries in the region. Each approach revealed increased health effects in a distinct manner: EPI studies reported excess mortality and morbidity during smoke haze compared to non-smoke haze periods; HBE studies estimated approximately 100,000 deaths attributable to smoke haze in the entire Southeast Asia considering all-cause mortality and all age groups, which ranged from 1,064-260,000 for specified mortality cause, age group, study area, and study period; HRA studies quantified potential lifetime cancer and non-cancer risks due to exposure to smoke-related chemicals. Currently, there is a lack of interconnection between these three approaches. The EPI approach requires extensive effort to investigate lifetime health effects, whereas the HRA approach needs to clarify the assumptions in exposure assessments to estimate lifetime health risks. The HBE approach allows the presentation of health impact in different scenarios, however, the risk functions used are derived from EPI studies from other regions. Two recent studies applied a combination of the EPI and HBE approaches to address uncertainty issues due to the selection of risk functions. In conclusion, all approaches revealed potential health risks due to smoke haze. Nonetheless, future studies should consider comparable exposure assessments to allow the integration of the three approaches.


Subject(s)
Air Pollutants , Fires , Air Pollutants/analysis , Air Pollutants/toxicity , Asia, Southeastern/epidemiology , Public Health , Risk Assessment
3.
Environ Pollut ; 195: 257-66, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25087200

ABSTRACT

The past decade marked record high air pollution episodes in Indonesia. In this study, we specifically focus on vegetation fires in Palangkaraya located near a Mega Rice Project area in Indonesia. We analyzed various gaseous air pollution data such as particulate matter (PM10), SO2, CO, O3, and NO2 study region. We also conducted elemental analysis at two different sites. Results from 2001 to 2010 suggested the longest hazardous air pollution episode during 2002 lasting about 80 days from mid-August to late-October. Maximum peak concentrations of PM10, SO2, CO, and O3 were also observed during 2002 and their values reached 1905, 85.8, 38.3, and 1003×10(-6) gm(-3) respectively. Elemental analysis showed significant increase in concentrations during 2011 and 2010. Satellite retrieved fires and weather data could explain most of the temporal variations. Our results highlight peat fires as a major contributor of photochemical smog and air pollution in the region.


Subject(s)
Air Pollution/statistics & numerical data , Fires , Soil , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring , Indonesia , Particulate Matter/analysis , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...