Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Rev Chem ; 8(5): 340-358, 2024 May.
Article in English | MEDLINE | ID: mdl-38641733

ABSTRACT

Simulating the quantum dynamics of molecules in the condensed phase represents a longstanding challenge in chemistry. Trapped-ion quantum systems may serve as a platform for the analog-quantum simulation of chemical dynamics that is beyond the reach of current classical-digital simulation. To identify a 'quantum advantage' for these simulations, performance analysis of both analog-quantum simulation on noisy hardware and classical-digital algorithms is needed. In this Review, we make a comparison between a noisy analog trapped-ion simulator and a few choice classical-digital methods on simulating the dynamics of a model molecular Hamiltonian with linear vibronic coupling. We describe several simple Hamiltonians that are commonly used to model molecular systems, which can be simulated with existing or emerging trapped-ion hardware. These Hamiltonians may serve as stepping stones towards the use of trapped-ion simulators for systems beyond the reach of classical-digital methods. Finally, we identify dynamical regimes in which classical-digital simulations seem to have the weakest performance with respect to analog-quantum simulations. These regimes may provide the lowest hanging fruit to make the most of potential quantum advantages.

2.
Biophys J ; 122(10): 1762-1771, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37056051

ABSTRACT

Studies of biological transport frequently neglect the explicit statistical correlations among particle site occupancies (i.e., they use a mean-field approximation). Neglecting correlations sometimes captures biological function, even for out-of-equilibrium and interacting systems. We show that neglecting correlations fails to describe free energy transduction, mistakenly predicting an abundance of slippage and energy dissipation, even for networks that are near reversible and lack interactions among particle sites. Interestingly, linear charge transport chains are well described without including correlations, even for networks that are driven and include site-site interactions typical of biological electron transfer chains. We examine three specific bioenergetic networks: a linear electron transfer chain (as found in bacterial nanowires), a near-reversible electron bifurcation network (as in complex III of respiration and other recently discovered structures), and a redox-coupled proton pump (as in complex IV of respiration).


Subject(s)
Electron Transport Complex IV , Protons , Oxidation-Reduction , Electron Transport Complex IV/metabolism , Energy Metabolism , Proton Pumps , Electron Transport , Biological Transport
3.
Biochim Biophys Acta Bioenerg ; 1862(4): 148377, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33453185

ABSTRACT

Electron bifurcation is a biological mechanism to drive a thermodynamically unfavorable redox reaction through direct coupling with an exergonic reaction. This process allows microorganisms to generate high energy reducing equivalents in order to sustain life and is often found in anaerobic metabolism, where the energy economy of the cell is poor. Recent work has revealed details of the redox energy landscapes for a variety of electron bifurcating enzymes, greatly expanding the understanding of how energy is transformed by this unique mechanism. Here we highlight the plasticity of these emerging landscapes, what is known regarding their mechanistic underpinnings, and provide a context for interpreting their biochemical activity within the physiological framework. We conclude with an outlook for propelling the field toward an integrative understanding of the impact of electron bifurcation.


Subject(s)
Electrons , Flavin-Adenine Dinucleotide/metabolism , Thermodynamics , Anaerobiosis , Electron Transport , Oxidation-Reduction
4.
Chem Commun (Camb) ; 55(79): 11823-11832, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31515543

ABSTRACT

Electron bifurcation moves electrons from a two-electron donor to reduce two spatially separated one-electron acceptors. If one of the electrons reduces a high-potential (lower energy) acceptor, then the other electron may proceed "uphill" to reduce a low-potential (higher energy) acceptor. This mechanism is now considered the third mode of energy transduction in biology, and offers promise for the development of novel bioinspired energy conversion strategies. Nature uses electron bifurcation to realize highly sought-after reactions: reversible CO2 reduction, nitrogen fixation, and hydrogen production. In this review, we summarize the current understanding of electron bifurcation, including both recent progress and outstanding questions in understanding and developing artificial electron bifurcation systems.

5.
Acc Chem Res ; 50(9): 2410-2417, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28876046

ABSTRACT

How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation. Remarkably, bifurcating electron transfer (ET) proteins typically send one electron uphill and one electron downhill by similar energies, such that the overall reaction is spontaneous, but not profligate. Electron bifurcation in the NADH-dependent reduced ferredoxin: NADP+ oxidoreductase I (Nfn) is explored in detail here. Recent experimental progress in understanding the structure and function of Nfn allows us to dissect its workings in the framework of modern ET theory. The first electron that leaves the two-electron donor flavin (L-FAD) executes a positive free energy "uphill" reaction, and the departure of this electron switches on a second thermodynamically spontaneous ET reaction from the flavin along a second pathway that moves electrons in the opposite direction and at a very different potential. The singly reduced ET products formed from the bifurcating flavin are more than two nanometers distant from each other. In Nfn, the second electron to leave the flavin is much more reducing than the first: the potentials are said to be "crossed." The eventually reduced cofactors, NADH and ferredoxin in the case of Nfn, perform crucial downstream redox processes of their own. We dissect the thermodynamics and kinetics of electron bifurcation in Nfn and find that the key features of electron bifurcation are (1) spatially separated transfer pathways that diverge from a two-electron donor, (2) one thermodynamically uphill and one downhill redox pathway, with a large negative shift in the donor's reduction potential after departure of the first electron, and (3) electron tunneling and activation factors that enable bifurcation, producing a 1:1 partitioning of electrons onto the two pathways. Electron bifurcation is found in the CO2 reducing pathways of methanogenic archaea, in the hydrogen pathways of hydrogenases, in the nitrogen fixing pathway of Fix, and in the mitochondrial charge transfer chain of complex III, cytochrome bc1. While crossed potentials may offer the biological advantage of producing tightly regulated high energy reactive species, neither kinetic nor thermodynamic considerations mandate crossed potentials to generate successful electron bifurcation. Taken together, the theoretical framework established here, focusing on the underpinning electron tunneling barriers and activation free energies, explains the logic of electron bifurcation that enables energy conversion and conservation in Nfn, points toward bioinspired schemes to execute multielectron redox chemistry, and establishes a roadmap for examining novel electron bifurcation networks in nature.


Subject(s)
Thermodynamics , Electrons , Kinetics , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...