Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Chem Sci ; 14(22): 6052-6058, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37293640

ABSTRACT

Incorporating organic semiconducting spacer cations into layered lead halide perovskite structures provides a powerful approach to mitigate the typical strong dielectric and quantum confinement effects by inducing charge-transfer between the organic and inorganic layers. Herein we report the synthesis and characterization of thin films of novel DJ-phase organic-inorganic layered perovskite semiconductors using a naphthalene diimide (NDI) based divalent spacer cation, which is shown to accept photogenerated electrons from the inorganic layer. With alkyl chain lengths of 6 carbons, an NDI-based thin film exhibited electron mobility (based on space charge-limited current for quasi-layered 〈n〉 = 5 material) was found to be as high as 0.03 cm2 V-1 s-1 with no observable trap-filling region suggesting trap passivation by the NDI spacer cation.

2.
ACS Appl Mater Interfaces ; 15(23): 27941-27951, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37255346

ABSTRACT

The development of stable materials, processable on a large area, is a prerequisite for perovskite industrialization. Beyond the perovskite absorber itself, this should also guide the development of all other layers in the solar cell. In this regard, the use of NiOx as a hole transport material (HTM) offers several advantages, as it can be deposited with high throughput on large areas and on flat or textured surfaces via sputtering, a well-established industrial method. However, NiOx may trigger the degradation of perovskite solar cells (PSCs) when exposed to environmental stressors. Already after 100 h of damp heat stressing, a strong fill factor (FF) loss appears in conjunction with a characteristic S-shaped J-V curve. By performing a wide range of analysis on cells and materials, completed by device simulation, the cause of the degradation is pinpointed and mitigation strategies are proposed. When NiOx is heated in an air-tight environment, its free charge carrier density drops, resulting in a band misalignment at the NiOx/perovskite interface and in the formation of a barrier impeding hole extraction. Adding an organic layer between the NiOx and the perovskite enables higher performances but not long-term thermal stability, for which reducing the NiOx thickness is necessary.

3.
ACS Energy Lett ; 8(4): 1645-1651, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37090168

ABSTRACT

Photoelectrochemical (PEC) CO2 reduction has received considerable attention given the inherent sustainability and simplicity of directly converting solar energy into carbon-based chemical fuels. However, complex photocathode architectures with protecting layers and cocatalysts are typically needed for selective and stable operation. We report herein that bare CuIn0.3Ga0.7S2 photocathodes can drive the PEC CO2 reduction with a benchmarking 1 Sun photocurrent density of over 2 mA/cm2 (at -2 V vs Fc+/Fc) and a product selectivity of up to 87% for CO (CO/all products) production while also displaying long-term stability for syngas production (over 44 h). Importantly, spectroelectrochemical analysis using PEC impedance spectroscopy (PEIS) and intensity-modulated photocurrent spectroscopy (IMPS) complements PEC data to reveal that tailoring the proton donor ability of the electrolyte is crucial for enhancing the performance, selectivity, and durability of the photocathode. When a moderate amount of protons is present, the density of photogenerated charges accumulated at the interface drops significantly, suggesting a faster charge transfer process. However, with a high concentration of proton donors, the H2 evolution reaction is preferred.

4.
Adv Mater ; 35(9): e2208740, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36442051

ABSTRACT

Gas diffusion electrodes are essential components of common fuel and electrolysis cells but are typically made from graphitic carbon or metallic materials, which do not allow light transmittance and thus limit the development of gas-phase based photoelectrochemical devices. Herein, the simple and scalable preparation of F-doped SnO2 (FTO) coated SiO2 interconnected fiber felt substrates is reported. Using 2-5 µm diameter fibers at a loading of 4 mg cm-2 , the resulting substrates have porosity of 90%, roughness factor of 15.8, and Young's Modulus of 0.2 GPa. A 100 nm conformal coating of FTO via atmospheric chemical vapor deposition gives sheet resistivity of 20 ± 3 Ω sq-1 and loss of incident light of 41% at illumination wavelength of 550 nm. The coating of various semiconductors on the substrates is established including Fe2 O3 (chemical bath deposition), CuSCN and Cu2 O (electrodeposition), and conjugated polymers (dip coating), and liquid-phase photoelectrochemical performance commensurate with flat FTO substrates is confirmed. Finally, gas phase H2 production is demonstrated with a polymer semiconductor photocathode membrane assembly at 1-Sun photocurrent density on the order of 1 mA cm-2 and Faradaic efficiency of 40%.

5.
ACS Nano ; 16(4): 5719-5730, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35290010

ABSTRACT

The liquid-phase exfoliation of semiconducting transition metal dichalcogenide (TMD) powders into 2D nanosheets represents a promising route toward the scalable production of ultrathin high-performance optoelectronic devices. However, the harsh conditions required negatively affect the semiconducting properties, leading to poor device performance. Herein we demonstrate a gentle exfoliation method employing standard bulk MoS2 powder (pressed into pellets) together with the electrochemical intercalation of a quaternary alkyl ammonium. The resulting nanosheets are produced in high yield (32%) and consist primarily of mono-, bi-, triatomic layers with large lateral dimensions (>1 µm), while retaining the semiconducting polymorph. Exceptional optoelectronic performance of nanosheet thin-films is observed, such as enhanced photoluminescence, charge carrier mobility (up to 0.2 cm2 V-1 s-1 in a multisheet device), and photon-to-current efficiency while maintaining high transparency (>80%). Specifically, as a photoanode for iodide oxidation, an internal quantum efficiency up to 90% (at +0.3 V vs Pt) is achieved (compared to only 12% for MoS2 nanosheets produced via ultrasonication). Further using a combination of fluorescence microscopy and high-resolution scanning transmission electron microscopy (STEM), we show that our gently exfoliated nanosheets possess a defect density (2.33 × 1013 cm-2) comparable to monolayer MoS2 prepared by vacuum-based techniques and at least three times less than ultrasonicated MoS2 nanoflakes. Finally, we expand this method toward other TMDs (WS2, WSe2) to demonstrate its versatility toward high-performance and fully scalable van der Waals heterojunction devices.

6.
ACS Appl Mater Interfaces ; 14(6): 8191-8198, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35129962

ABSTRACT

The use of a bulk heterojunction of organic semiconductors to drive photoelectrochemical water splitting is an emerging trend; however, the optimum energy levels of the donor and acceptor have not been established for photoanode operation with respect to electrolyte pH. Herein, we prepare a set of donor polymers and non-fullerene acceptors with varying energy levels to probe the effect of photogenerated electron injection into a SnO2-based substrate under sacrificial photo-oxidation conditions. Photocurrent density (for sacrificial oxidation) up to 4.1 mA cm-2 was observed at 1.23 V vs reversible hydrogen electrode in optimized photoanodes. Moreover, we establish that a lower-lying donor polymer leads to improved performance due to both improved exciton separation and better charge collection. Similarly, lower-lying acceptors also give photoanodes with higher photocurrent density but with a later photocurrent onset potential and a narrower range of pH for good operation due to the Nernstian behavior of the SnO2, which leads to a smaller driving force for electron injection at high pH.

7.
ChemSusChem ; 14(14): 3001-3009, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34075712

ABSTRACT

Incorporating extended pi-conjugated organic cations in layered lead halide perovskites is a recent trend promising to merge the fields of organic semiconductors and lead halide perovskites. Herein, we integrate benzodithiophene (BDT) into Ruddlesden-Popper (RP) layered and quasi-layered lead iodide thin films (with methylammonium, MA) of the form (BDT)2 MAn-1 Pbn I3n+1 . The importance of tuning the ligand chemical structure is shown as an alkyl chain length of at least six carbon atoms is required to form a photoactive RP (n=1) phase. With N=20 or 100, as prepared in the precursor solution following the formula (BDT)2 MAN-1 PbN I3N+1 , the performance and stability of devices surpassed those with phenylethylammonium (PEA). For N=100, the BDT cation gave a power conversion efficiency of up to 14.7 % vs. 13.7 % with PEA. Transient photocurrent, UV photoelectron spectroscopy, and Fourier transform infrared spectroscopy point to improved charge transport in the device active layer and additional electronic states close to the valence band, suggesting the formation of a Lewis adduct between the BDT and surface iodide vacancies.

8.
J Am Chem Soc ; 142(47): 19980-19991, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33170007

ABSTRACT

The use of molecular modulators to reduce the defect density at the surface and grain boundaries of perovskite materials has been demonstrated to be an effective approach to enhance the photovoltaic performance and device stability of perovskite solar cells. Herein, we employ crown ethers to modulate perovskite films, affording passivation of undercoordinated surface defects. This interaction has been elucidated by solid-state nuclear magnetic resonance and density functional theory calculations. The crown ether hosts induce the formation of host-guest complexes on the surface of the perovskite films, which reduces the concentration of surface electronic defects and suppresses nonradiative recombination by 40%, while minimizing moisture permeation. As a result, we achieved substantially improved photovoltaic performance with power conversion efficiencies exceeding 23%, accompanied by enhanced stability under ambient and operational conditions. This work opens a new avenue to improve the performance and stability of perovskite-based optoelectronic devices through supramolecular chemistry.

9.
J Am Chem Soc ; 142(26): 11428-11433, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32391696

ABSTRACT

The employment of 2D perovskites is a promising approach to tackling the stability and voltage issues inherent in perovskite solar cells. It remains unclear, however, whether other perovskites with different dimensionalities have the same effect on efficiency and stability. Here, we report the use of quasi-3D azetidinium lead iodide (AzPbI3) as a secondary layer on top of the primary 3D perovskite film that results in significant improvements in the photovoltaic parameters. Remarkably, the utilization of AzPbI3 leads to a new passivation mechanism due to the presence of surface dipoles resulting in a power conversion efficiency (PCE) of 22.4%. The open-circuit voltage obtained is as high as 1.18 V, which is among the highest reported to date for single junction perovskite solar cells, corresponding to a voltage deficit of 0.37 V for a band gap of 1.55 eV.

10.
J Am Chem Soc ; 142(17): 7795-7802, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32270679

ABSTRACT

As organic semiconductors attract increasing attention to application in the fields of bioelectronics and artificial photosynthesis, understanding the factors that determine their robust operation in direct contact with aqueous electrolytes becomes a critical task. Herein we uncover critical factors that influence the operational stability of donor:acceptor bulk heterojunction photocathodes for solar hydrogen production and significantly advance their performance under operational conditions. First, using the direct photoelectrochemical reduction of aqueous Eu3+ and impedance spectroscopy, we determine that replacing the commonly used fullerene-based electron acceptor with a perylene diimide-based polymer drastically increases operational stability and identify that limiting the photogenerated electron accumulation at the organic/water interface to values of ca. 100 nC cm-2 is required for stable operation (>12 h). These insights are extended to solar-driven hydrogen production using MoS3, MoP, or RuO2 water reduction catalyst overlayers where it is found that the catalyst morphology strongly affects performance due to differences in charge extraction. Optimized performance of bulk heterojunction photocathodes coated with a MoS3:MoP composite gave 1 Sun photocurrent density up to 8.7 mA cm-2 at 0 V vs RHE (pH 1). However, increased stability was gained with RuO2 where initial photocurrent density (>8 mA cm-2) deceased only 15% or 33% during continuous operation for 8 or 20 h, respectively, thus demonstrating unprecedented robustness without a protection layer. This performance represents a new benchmark for organic semiconductor photocathodes for solar fuel production and advances the understanding of stability criteria for organic semiconductor/water-junction-based devices.

11.
Angew Chem Int Ed Engl ; 58(36): 12696-12704, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31328858

ABSTRACT

The facile synthesis, solution-processability, and outstanding optoelectronic properties of emerging colloidal lead halide perovskite quantum dots (LHP QDs) makes them ideal candidates for scalable and inexpensive optoelectronic applications, including photovoltaic (PV) devices. The first demonstration of integrating CsPbI3 QDs into a conventional organic solar cell (OSC) involves embedding the LHP QDs in a donor-acceptor (PTB7-Th:PC71 BM) bulk heterojunction. Optimizing the loading amount at 3 wt %, we demonstrate a power conversion efficiency of 10.8 %, which is a 35 % increase over control devices, and is a record amongst hybrid ternary OSCs. Detailed investigation into the mechanisms behind the performance enhancement shows that increased light absorption is not a factor, but that increased exciton separation in the acceptor phase and reduced recombination are responsible.

12.
ACS Appl Mater Interfaces ; 10(35): 29552-29564, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30084638

ABSTRACT

Due to its high sensitivity to corrosion, the use of Si in direct photoelectrochemical (PEC) water-splitting systems that convert solar energy into chemical fuels has been greatly limited. Therefore, the development of low-cost materials resistant to corrosion under oxidizing conditions is an important goal toward a suitable protection of otherwise unstable semiconductors used in PEC cells. Here, we report on the development of a protective coating based on thin and electrically conductive nanocrystalline boron-doped diamond (BDD) layers. We found that  BDD layers protect the underlying Si photoelectrodes over a wide pH range (1-14) in aqueous electrolyte solutions. A BDD layer maintains an efficient charge carrier transfer from the underlying silicon to the electrolyte solution. Si|BDD photoelectrodes show no sign of performance degradation after a continuous PEC treatment in neutral, acidic, and basic electrolytes. The deposition of a cobalt phosphate (CoPi) oxygen evolution catalyst onto the BDD layer significantly reduces the overpotential for water oxidation, demonstrating the ability of  BDD layers to substitute the transparent conductive oxide coatings, such as indium tin oxide (ITO) and fluorine-doped tin oxide (FTO), frequently used as protective layers in Si photoelectrodes.

13.
Small ; 13(34)2017 09.
Article in English | MEDLINE | ID: mdl-28722350

ABSTRACT

Mesoscopic solar cells based on nanostructured oxide semiconductors are considered as a promising candidates to replace conventional photovoltaics employing costly materials. However, their overall performances are below the sufficient level required for practical usages. Herein, this study proposes an anodized Ti foam (ATF) with multidimensional and hierarchical architecture as a highly efficient photoelectrode for the generation of a large photocurrent. ATF photoelectrodes prepared by electrochemical anodization of freeze-cast Ti foams have three favorable characteristics: (i) large surface area for enhanced light harvesting, (ii) 1D semiconductor structure for facilitated charge collection, and (iii) 3D highly conductive metallic current collector that enables exclusion of transparent conducting oxide substrate. Based on these advantages, when ATF is utilized in dye-sensitized solar cells, short-circuit photocurrent density up to 22.0 mA cm-2 is achieved in the conventional N719 dye-I3- /I- redox electrolyte system even with an intrinsically inferior quasi-solid electrolyte.

14.
Angew Chem Int Ed Engl ; 56(23): 6583-6588, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28471078

ABSTRACT

Nanostructured metal oxide semiconductors have shown outstanding performances in photoelectrochemical (PEC) water splitting, but limitations in light harvesting and charge collection have necessitated further advances in photoelectrode design. Herein, we propose anodized Fe foams (AFFs) with multidimensional nano/micro-architectures as a highly efficient photoelectrode for PEC water splitting. Fe foams fabricated by freeze-casting and sintering were electrochemically anodized and directly used as photoanodes. We verified the superiority of our design concept by achieving an unprecedented photocurrent density in PEC water splitting over 5 mA cm-2 before the dark current onset, which originated from the large surface area and low electrical resistance of the AFFs. A photocurrent of over 6.8 mA cm-2 and an accordingly high incident photon-to-current efficiency of over 50 % at 400 nm were achieved with incorporation of Co oxygen evolution catalysts. In addition, research opportunities for further advances by structual and compositional modifications are discussed, which can resolve the low fill factoring behavior and improve the overall performance.

15.
Chempluschem ; 82(7): 1057-1061, 2017 Jul.
Article in English | MEDLINE | ID: mdl-31961596

ABSTRACT

A series of tri-tert-butyl zinc(II) phthalocyanines (Pcs) substituted with pyridyl, carboxyl, or picolinic acid anchoring groups on the periphery were prepared. Photovoltaic (PV) studies on these dyes were carried out revealing some interesting features. In the case of the pyridyl-substituted Pcs, the PV properties were found to depend strongly on the the pyridyl substitution pattern (meta or para) and the number of pyridyl units at the macrocycle's periphery (one or two). For these four pyridyl-substituted Pcs, higher photovoltaic efficiencies were obtained for 1) the para- versus the meta-substituted Pcs, and 2) the mono- versus the bis-functionalized dyes. In order to improve the poor adsorption of the pyridyl-substituted Pcs onto TiO2 , a new dye was tested bearing a picolinic acid unit. This moiety combines a carboxylic acid function, as a strong anchoring group for binding to TiO2 , with an electron-withdrawing nitrogen atom for better electron injection into the semiconductor's conduction band. For this latter system, an improvement in the PV efficiency up to 2.1 % was obtained.

16.
J Phys Chem Lett ; 6(1): 66-71, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-26263093

ABSTRACT

The complex refractive index (dielectric function) of planar CH3NH3PbI3 thin films at room temperature is investigated by variable angle spectroscopic ellipsometry and spectrophotometry. Knowledge of the complex refractive index is essential for designing photonic devices based on CH3NH3PbI3 thin films such as solar cells, light-emitting diodes, or lasers. Because the directly measured quantities (reflectance, transmittance, and ellipsometric spectra) are inherently affected by multiple reflections, the complex refractive index has to be determined indirectly by fitting a model dielectric function to the experimental spectra. We model the dielectric function according to the Forouhi-Bloomer formulation with oscillators positioned at 1.597, 2.418, and 3.392 eV and achieve excellent agreement with the experimental spectra. Our results agree well with previously reported data of the absorption coefficient and are consistent with Kramers-Kronig transformations. The real part of the refractive index assumes a value of 2.611 at 633 nm, implying that CH3NH3PbI3-based solar cells are ideally suited for the top cell in monolithic silicon-based tandem solar cells.

17.
J Phys Chem Lett ; 6(3): 401-6, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-26261955

ABSTRACT

Micro-Raman spectroscopy provides laterally resolved microstructural information for a broad range of materials. In this Letter, we apply this technique to tri-iodide (CH3NH3PbI3), tribromide (CH3NH3PbBr3), and mixed iodide-bromide (CH3NH3PbI3-xBrx) organic-inorganic halide perovskite thin films and discuss necessary conditions to obtain reliable data. We explain how to measure Raman spectra of pristine CH3NH3PbI3 layers and discuss the distinct Raman bands that develop during moisture-induced degradation. We also prove unambiguously that the final degradation products contain pure PbI2. Moreover, we describe CH3NH3PbI3-xBrx Raman spectra and discuss how the perovskite crystallographic symmetries affect the Raman band intensities and spectral shapes. On the basis of the dependence of the Raman shift on the iodide-to-bromide ratio, we show that Raman spectroscopy is a fast and nondestructive method for the evaluation of the relative iodide-to-bromide ratio.

18.
Phys Chem Chem Phys ; 17(3): 1619-29, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25437303

ABSTRACT

Tandem solar cells constructed from a crystalline silicon (c-Si) bottom cell and a low-cost top cell offer a promising way to ensure long-term price reductions of photovoltaic modules. We present a four-terminal tandem solar cell consisting of a methyl ammonium lead triiodide (CH3NH3PbI3) top cell and a c-Si heterojunction bottom cell. The CH3NH3PbI3 top cell exhibits broad-band transparency owing to its design free of metallic components and yields a transmittance of >55% in the near-infrared spectral region. This allows the generation of a short-circuit current density of 13.7 mA cm(-2) in the bottom cell. The four-terminal tandem solar cell yields an efficiency of 13.4% (top cell: 6.2%, bottom cell: 7.2%), which is a gain of 1.8%abs with respect to the reference single-junction CH3NH3PbI3 solar cell with metal back contact. We employ the four-terminal tandem solar cell for a detailed investigation of the optical losses and to derive guidelines for further efficiency improvements. Based on a power loss analysis, we estimate that tandem efficiencies of ∼28% are attainable using an optically optimized system based on current technology, whereas a fully optimized, ultimate device with matched current could yield up to 31.6%.

19.
Chemphyschem ; 15(6): 1033-6, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24590767

ABSTRACT

A new phthalocyanine (Pc) bearing bulky peripheral substituents and a carboxylic anchoring group directly attached to the macrocycle has been prepared and used as a sensitizer in DSSCs, reaching 5.57% power conversion efficiency. In addition, an enhanced performance for the TT40 dye, previously reported by us, was achieved in optimized devices, obtaining a new record efficiency with Pc-sensitized cells.

20.
Chemistry ; 20(7): 2016-21, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24443172

ABSTRACT

A series of subphthalocyanines (SubPcs) bearing a carboxylic acid group either at the peripheral or axial position have been designed and synthesized to investigate the influence of the COOH group positions on the dye-sensitized solar cell (DSSC) performance. The DSSC devices based on SubPcs with axially substituted carboxylic acid groups showed low photovoltaic performance, whereas peripherally substituted one exhibited higher power conversion efficiency owing to improved injection from LUMO of SubPcs to the TiO2 conduction band.

SELECTION OF CITATIONS
SEARCH DETAIL
...