Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Biochem ; 268(23): 6284-90, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11733025

ABSTRACT

FTIR spectroscopy has been applied to study the coordination structures of Mg2+ and Ca2+ ions bound in Akazara scallop troponin C (TnC), which contains only a single Ca2+ binding site. The region of the COO- antisymmetric stretch provides information about the coordination modes of COO- groups to the metal ions: bidentate, unidentate, or pseudo-bridging. Two bands were observed at 1584 and 1567 cm-1 in the apo state, whereas additional bands were observed at 1543 and 1601 cm-1 in the Ca2+-bound and Mg2+-bound states, respectively. The intensity of the band at 1567 cm-1 in the Mg2+-bound state was identical to that in the apo state. Therefore, the side-chain COO- group of Glu142 at the 12th position in the Ca2+-binding site coordinates to Ca2+ in the bidentate mode but does not interact with Mg2+ directly. A slight upshift of COO- antisymmetric stretch due to Asp side-chains was also observed upon Mg2+ and Ca2+ binding. This indicates that the COO- groups of Asp131 and Asp133 interact with both Ca2+ and Mg2+ in the pseudo-bridging mode. Therefore, the present study directly demonstrated that the coordination structure of Mg2+ was different from that of Ca2+ in the Ca2+-binding site. In contrast to vertebrate TnC, most of the secondary structures remained unchanged among apo, Mg2+-bound and Ca2+-bound states of Akazara scallop TnC, as spectral changes upon either Ca2+ or Mg2+ binding were very small in the infrared amide-I' region as well as in the CD spectra. Fluorescence spectroscopy indicated that the spectral changes upon Ca2+ binding were larger than that upon Mg2+ binding. Moreover, gel-filtration experiments indicated that the molecular sizes of TnC had the order apo TnC > Mg2+-bound TnC > Ca2+-bound TnC. These results suggest that the tertiary structures are different in the Ca2+- and Mg2+-bound states. The present study may provide direct evidence that the side-chain COO- groups in the Ca2+-binding site are directly involved in the functional on/off mechanism of the activation of Akazara scallop TnC.


Subject(s)
Mollusca/chemistry , Troponin C/chemistry , Animals , Binding Sites , Calcium/chemistry , Circular Dichroism , Magnesium/chemistry , Models, Chemical , Solutions , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared
2.
Structure ; 9(9): 817-26, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11566131

ABSTRACT

BACKGROUND: In Escherichia coli, the cell division site is determined by the cooperative activity of min operon products MinC, MinD, and MinE. MinC is a nonspecific inhibitor of the septum protein FtsZ, and MinE is the supressor of MinC. MinD plays a multifunctional role. It is a membrane-associated ATPase and is a septum site-determining factor through the activation and regulation of MinC and MinE. MinD is also known to undergo a rapid pole-to-pole oscillation movement in vivo as observed by fluorescent microscopy. RESULTS: The three-dimensional structure of the MinD-2 from Pyrococcus horikoshii OT3 (PH0612) has been determined at 2.3 A resolution by X-ray crystallography using the Se-Met MAD method. The molecule consists of a beta sheet with 7 parallel and 1 antiparallel strands and 11 peripheral alpha helices. It contains the classical mononucleotide binding loop with bound ADP and magnesium ion, which is consistent with the suggested ATPase activity. CONCLUSIONS: Structure analysis shows that MinD is most similar to nitrogenase iron protein, which is a member of the P loop-containing nucleotide triphosphate hydrolase superfamily of proteins. Unlike nitrogenase or other member proteins that normally work as a dimer, MinD was present as a monomer in the crystal. Both the 31P NMR and Malachite Green method exhibited relatively low levels of ATPase activity. These facts suggest that MinD may work as a molecular switch in the multiprotein complex in bacterial cell division.


Subject(s)
Adenosine Diphosphate/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Escherichia coli Proteins , Magnesium/metabolism , Pyrococcus/enzymology , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Protein Folding , Protein Structure, Secondary , Sequence Alignment , Sequence Homology, Amino Acid , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...