Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Nanotechnol ; 14(3): 269-278, 2019 03.
Article in English | MEDLINE | ID: mdl-30664751

ABSTRACT

Cyclic dinucleotide (CDN) agonists of stimulator of interferon genes (STING) are a promising class of immunotherapeutics that activate innate immunity to increase tumour immunogenicity. However, the efficacy of CDNs is limited by drug delivery barriers, including poor cellular targeting, rapid clearance and inefficient transport to the cytosol where STING is localized. Here, we describe STING-activating nanoparticles (STING-NPs)-rationally designed polymersomes for enhanced cytosolic delivery of the endogenous CDN ligand for STING, 2'3' cyclic guanosine monophosphate-adenosine monophosphate (cGAMP). STING-NPs increase the biological potency of cGAMP, enhance STING signalling in the tumour microenvironment and sentinel lymph node, and convert immunosuppressive tumours to immunogenic, tumoricidal microenvironments. This leads to enhanced therapeutic efficacy of cGAMP, inhibition of tumour growth, increased rates of long-term survival, improved response to immune checkpoint blockade and induction of immunological memory that protects against tumour rechallenge. We validate STING-NPs in freshly isolated human melanoma tissue, highlighting their potential to improve clinical outcomes of immunotherapy.


Subject(s)
Endosomes/metabolism , Immunotherapy , Membrane Proteins/agonists , Neoplasms/immunology , Neoplasms/therapy , Polymers/metabolism , Animals , Cytosol/metabolism , Female , Humans , Inflammation/pathology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Neoplasm Metastasis , Nucleotides, Cyclic/metabolism , T-Lymphocytes/immunology , Tumor Microenvironment
2.
Sci Rep ; 8(1): 16527, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30410003

ABSTRACT

An HIV vaccine capable of eliciting durable neutralizing antibody responses continues to be an important unmet need. Multivalent nanoparticles displaying a high density of envelope trimers may be promising immunogen forms to elicit strong and durable humoral responses to HIV, but critical particle design criteria remain to be fully defined. To this end, we developed strategies to covalently anchor a stabilized gp140 trimer, BG505 MD39, on the surfaces of synthetic liposomes to study the effects of trimer density and vesicle stability on vaccine-elicited humoral responses in mice. CryoEM imaging revealed homogeneously distributed and oriented MD39 on the surface of liposomes irrespective of particle size, lipid composition, and conjugation strategy. Immunization with covalent MD39-coupled liposomes led to increased germinal center and antigen-specific T follicular helper cell responses and significantly higher avidity serum MD39-specific IgG responses compared to immunization with soluble MD39 trimers. A priming immunization with liposomal-MD39 was important for elicitation of high avidity antibody responses, regardless of whether booster immunizations were administered with either soluble or particulate trimers. The stability of trimer anchoring to liposomes was critical for these effects, as germinal center and output antibody responses were further increased by liposome compositions incorporating sphingomyelin that exhibited high in vitro stability in the presence of serum. Together these data highlight key liposome design features for optimizing humoral immunity to lipid nanoparticle immunogens.


Subject(s)
Antibodies, Neutralizing/blood , Germinal Center/immunology , HIV Antibodies/blood , env Gene Products, Human Immunodeficiency Virus/administration & dosage , AIDS Vaccines/administration & dosage , AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Animals , Antibody Formation , Cell Line , Cryoelectron Microscopy , Drug Design , Drug Stability , Humans , Immunity, Humoral , Immunization , Liposomes , Mice , Nanoparticles , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/immunology
3.
Bioconjug Chem ; 29(4): 1131-1140, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29465986

ABSTRACT

The development of synthetic nanomaterials that could embed within, penetrate, or induce fusion between membranes without permanent disruption would have great significance for biomedical applications. Here we describe structure-function relationships of highly water-soluble gold nanoparticles comprised of an ∼1.5-5 nm diameter metal core coated by an amphiphilic organic ligand shell, which exhibit membrane embedding and fusion activity mediated by the surface ligands. Using an environment-sensitive dye anchored within the ligand shell as a sensor of membrane embedding, we demonstrate that particles with core sizes of ∼2-3 nm are capable of embedding within and penetrating fluid bilayers. At the nanoscale, these particles also promote spontaneous fusion of liposomes or spontaneously embed within intact liposomal vesicles. These studies provide nanoparticle design and selection principles that could be used in drug delivery applications, as membrane stains, or for the creation of novel organic/inorganic nanomaterial self-assemblies.


Subject(s)
Lipid Bilayers , Membrane Fusion , Nanoparticles/chemistry , Permeability , Boron Compounds/chemistry , Hydrophobic and Hydrophilic Interactions , Ligands , Liposomes , Particle Size , Static Electricity , Structure-Activity Relationship
4.
Immunity ; 45(3): 483-496, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27617678

ABSTRACT

Broadly neutralizing antibodies (bnAbs) against the N332 supersite of the HIV envelope (Env) trimer are the most common bnAbs induced during infection, making them promising leads for vaccine design. Wild-type Env glycoproteins lack detectable affinity for supersite-bnAb germline precursors and are therefore unsuitable immunogens to prime supersite-bnAb responses. We employed mammalian cell surface display to design stabilized Env trimers with affinity for germline-reverted precursors of PGT121-class supersite bnAbs. The trimers maintained native-like antigenicity and structure, activated PGT121 inferred-germline B cells ex vivo when multimerized on liposomes, and primed PGT121-like responses in PGT121 inferred-germline knockin mice. Design intermediates have levels of epitope modification between wild-type and germline-targeting trimers; their mutation gradient suggests sequential immunization to induce bnAbs, in which the germline-targeting prime is followed by progressively less-mutated design intermediates and, lastly, with native trimers. The vaccine design strategies described could be utilized to target other epitopes on HIV or other pathogens.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , Polysaccharides/immunology , Amino Acid Sequence , Animals , B-Lymphocytes/immunology , Epitopes/immunology , HIV Infections/immunology , HIV-1/immunology , Immunization/methods , Mice , Mice, Knockout , Mutation/immunology , Sequence Alignment , env Gene Products, Human Immunodeficiency Virus/immunology
5.
Angew Chem Int Ed Engl ; 55(10): 3347-51, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26695874

ABSTRACT

Packaging multiple small interfering RNA (siRNA) molecules into nanostructures at precisely defined ratios is a powerful delivery strategy for effective RNA interference (RNAi) therapy. We present a novel RNA nanotechnology based approach to produce multiple components of polymerized siRNA molecules that are simultaneously self-assembled and densely packaged into composite sponge-like porous microstructures (Multi-RNAi-MSs) by rolling circle transcription. The Multi-RNAi-MSs were designed to contain a combination of multiple polymeric siRNA molecules with precisely controlled stoichiometry within a singular microstructure by manipulating the types and ratios of the circular DNA templates. The Multi-RNAi-MSs were converted into nanosized complexes by polyelectrolyte condensation to manipulate their physicochemical properties (size, shape, and surface charge) for favorable delivery, while maintaining the multifunctional properties of the siRNAs for combined therapeutic effects. These Multi-RNAi-MS systems have great potential in RNAi-mediated biomedical applications, for example, for the treatment of cancer, genetic disorders, and viral infections.


Subject(s)
RNA Interference , RNA, Small Interfering/administration & dosage , Microscopy, Electron, Scanning
6.
Nano Lett ; 15(5): 3008-16, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25789998

ABSTRACT

Targeted RNA delivery to lung endothelial cells has the potential to treat conditions that involve inflammation, such as chronic asthma and obstructive pulmonary disease. To this end, chemically modified dendrimer nanomaterials were synthesized and optimized for targeted small interfering RNA (siRNA) delivery to lung vasculature. Using a combinatorial approach, the free amines on multigenerational poly(amido amine) and poly(propylenimine) dendrimers were substituted with alkyl chains of increasing length. The top performing materials from in vivo screens were found to primarily target Tie2-expressing lung endothelial cells. At high doses, the dendrimer-lipid derivatives did not cause chronic increases in proinflammatory cytokines, and animals did not suffer weight loss due to toxicity. We believe these materials have potential as agents for the pulmonary delivery of RNA therapeutics.


Subject(s)
Dendrimers/chemistry , Gene Transfer Techniques , Nanostructures/chemistry , RNA, Small Interfering/chemistry , Animals , Dendrimers/therapeutic use , Endothelial Cells/drug effects , Humans , Lung/drug effects , Lung/pathology , Nanostructures/therapeutic use , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use
7.
Adv Mater ; 26(21): 3398-404, 2014 Jun 04.
Article in English | MEDLINE | ID: mdl-24648015

ABSTRACT

M13 bacteriophages are assembled via a covalent layer-by-layer process to form a highly nanoporous network capable of organizing nanoparticles and acting as a scaffold for templating metal-oxides. The morphological and optical properties of the film itself are presented as well as its ability to organize and disperse metal nanoparticles.


Subject(s)
Bacteriophage M13/chemistry , Nanostructures/chemistry , Bacteriophage M13/ultrastructure , Gold Compounds/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Porosity , Titanium/chemistry
8.
Nano Lett ; 13(2): 637-42, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23339821

ABSTRACT

In photovoltaic devices, light harvesting (LH) and carrier collection have opposite relations with the thickness of the photoactive layer, which imposes a fundamental compromise for the power conversion efficiency (PCE). Unbalanced LH at different wavelengths further reduces the achievable PCE. Here, we report a novel approach to broadband balanced LH and panchromatic solar energy conversion using multiple-core-shell structured oxide-metal-oxide plasmonic nanoparticles. These nanoparticles feature tunable localized surface plasmon resonance frequencies and the required thermal stability during device fabrication. By simply blending the plasmonic nanoparticles with available photoactive materials, the broadband LH of practical photovoltaic devices can be significantly enhanced. We demonstrate a panchromatic dye-sensitized solar cell with an increased PCE from 8.3% to 10.8%, mainly through plasmon-enhanced photoabsorption in the otherwise less harvested region of solar spectrum. This general and simple strategy also highlights easy fabrication, and may benefit solar cells using other photoabsorbers or other types of solar-harvesting devices.

9.
Nat Nanotechnol ; 7(10): 677-82, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22983492

ABSTRACT

Molecular imaging allows clinicians to visualize the progression of tumours and obtain relevant information for patient diagnosis and treatment. Owing to their intrinsic optical, electrical and magnetic properties, nanoparticles are promising contrast agents for imaging dynamic molecular and cellular processes such as protein-protein interactions, enzyme activity or gene expression. Until now, nanoparticles have been engineered with targeting ligands such as antibodies and peptides to improve tumour specificity and uptake. However, excessive loading of ligands can reduce the targeting capabilities of the ligand and reduce the ability of the nanoparticle to bind to a finite number of receptors on cells. Increasing the number of nanoparticles delivered to cells by each targeting molecule would lead to higher signal-to-noise ratios and would improve image contrast. Here, we show that M13 filamentous bacteriophage can be used as a scaffold to display targeting ligands and multiple nanoparticles for magnetic resonance imaging of cancer cells and tumours in mice. Monodisperse iron oxide magnetic nanoparticles assemble along the M13 coat, and its distal end is engineered to display a peptide that targets SPARC glycoprotein, which is overexpressed in various cancers. Compared with nanoparticles that are directly functionalized with targeting peptides, our approach improves contrast because each SPARC-targeting molecule delivers a large number of nanoparticles into the cells. Moreover, the targeting ligand and nanoparticles could be easily exchanged for others, making this platform attractive for in vivo high-throughput screening and molecular detection.


Subject(s)
Bacteriophage M13/chemistry , Magnetic Resonance Imaging/methods , Nanoparticles/chemistry , Prostatic Neoplasms/diagnostic imaging , Animals , Cell Line, Tumor , Humans , Male , Mice , Neoplasm Transplantation , Osteonectin , Radiography , Transplantation, Heterologous , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
10.
Nanoscale ; 4(11): 3405-9, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22572920

ABSTRACT

A highly porous electrode comprised of biologically templated iridium oxide-gold (IrO(2)-Au) hybrid nanowires is introduced for electrochromic applications. A filamentous M13 virus is genetically engineered to display IrO(2)-binding peptides on the viral surface and used as a template for the self-assembly of IrO(2) nanoclusters into a nanowire. The open porous morphology of the prepared nanowire film facilitates ion transport. Subsequently, the redox kinetics of the IrO(2) nanowires seems to be limited by the electric resistance of the nanowire film. To increase the electron mobility in the nanowires, gold nanoparticles are chemically linked to the virus prior to the IrO(2) mineralization, forming a gold nanostring structure along the long axis of the virus. The resulting IrO(2)-Au hybrid nanowires exhibit a switching time of 35 ms for coloration and 25 ms for bleaching with a transmission change of about 30.5% at 425 nm. These values represent almost an order of magnitude faster switching responses than those of an IrO(2) nanowire film having the similar optical contrast. This work shows that genetically engineered viruses can serve as versatile templates to co-assemble multiple functional molecules, enabling control of the electrochemical properties of nanomaterials.


Subject(s)
Gold/chemistry , Iridium/chemistry , Nanowires/chemistry , Bacteriophage M13/chemistry , Dimethylpolysiloxanes/chemistry , Electrochemical Techniques , Nanoparticles/chemistry , Oxidation-Reduction , Peptides/chemistry
11.
Energy Environ Sci ; 5(8): 8328-8334, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-24910712

ABSTRACT

A facile synthetic route was developed to make Au nanowires (NWs) from surfactant-mediated bio-mineralization of a genetically engineered M13 phage with specific Au binding peptides. From the selective interaction between Au binding M13 phage and Au ions in aqueous solution, Au NWs with uniform diameter were synthesized at room temperature with yields greater than 98 % without the need for size selection. The diameters of Au NWs were controlled from 10 nm to 50 nm. The Au NWs were found to be active for electrocatalytic oxidation of CO molecules for all sizes, where the activity was highly dependent on the surface facets of Au NWs. This low-temperature high yield method of preparing Au NWs was further extended to the synthesis of Au/Pt core/shell NWs with controlled coverage of Pt shell layers. Electro-catalytic studies of ethanol oxidation with different Pt loading showed enhanced activity relative to a commercial supported Pt catalyst, indicative of the dual functionality of Pt for the ethanol oxidation and Au for the anti-poisoning component of Pt. These new one-dimensional noble metal NWs with controlled compositions could facilitate the design of new alloy materials with tunable properties.

12.
Nat Nanotechnol ; 6(6): 377-84, 2011 Apr 24.
Article in English | MEDLINE | ID: mdl-21516089

ABSTRACT

The performance of photovoltaic devices could be improved by using rationally designed nanocomposites with high electron mobility to efficiently collect photo-generated electrons. Single-walled carbon nanotubes exhibit very high electron mobility, but the incorporation of such nanotubes into nanocomposites to create efficient photovoltaic devices is challenging. Here, we report the synthesis of single-walled carbon nanotube-TiO(2) nanocrystal core-shell nanocomposites using a genetically engineered M13 virus as a template. By using the nanocomposites as photoanodes in dye-sensitized solar cells, we demonstrate that even small fractions of nanotubes improve the power conversion efficiency by increasing the electron collection efficiency. We also show that both the electronic type and degree of bundling of the nanotubes in the nanotube/TiO(2) complex are critical factors in determining device performance. With our approach, we achieve a power conversion efficiency in the dye-sensitized solar cells of 10.6%.


Subject(s)
Nanocomposites/chemistry , Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Photosensitizing Agents/chemistry , Titanium/chemistry , Electric Conductivity , Electric Power Supplies , Electron Transport , Electrons , Equipment Design , Materials Testing , Nanotechnology/instrumentation , Particle Size , Solar Energy , Surface Properties
13.
ACS Nano ; 4(6): 3227-35, 2010 Jun 22.
Article in English | MEDLINE | ID: mdl-20527795

ABSTRACT

For decades, ethanol has been in use as a fuel for the storage of solar energy in an energy-dense, liquid form. Over the past decade, the ability to reform ethanol into hydrogen gas suitable for a fuel cell has drawn interest as a way to increase the efficiency of both vehicles and stand-alone power generators. Here we report the use of extremely small nanocrystalline materials to enhance the performance of 1% Rh/10% Ni@CeO(2) catalysts in the oxidative steam reforming of ethanol with a ratio of 1.7:1:10:11 (air/EtOH/water/argon) into hydrogen gas, achieving 100% conversion of ethanol at only 300 degrees C with 60% H(2) in the product stream and less than 0.5% CO. Additionally, nanocrystalline 10% Ni@CeO(2) was shown to achieve 100% conversion of ethanol at 400 degrees C with 73% H(2), 2% CO, and 2% CH(4) in the product stream. Finally, we demonstrate the use of biological templating on M13 to improve the resistance of this catalyst to deactivation over 52 h tests at high flow rates (120 000 h(-1) GHSV) at 450 degrees C. This study suggests that the use of highly nanocrystalline, biotemplated catalysts to improve activity and stability is a promising route to significant gains over traditional catalyst manufacture methods.


Subject(s)
Bacteriophage M13/chemistry , Bioelectric Energy Sources , Crystallization/methods , Ethanol/chemistry , Hydrogen/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Viral Proteins/chemistry , Catalysis , Hydrogen/isolation & purification , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Nanotechnology/methods , Particle Size , Surface Properties
14.
Nat Nanotechnol ; 5(5): 340-4, 2010 May.
Article in English | MEDLINE | ID: mdl-20383127

ABSTRACT

Over several billion years, cyanobacteria and plants have evolved highly organized photosynthetic systems to shuttle both electronic and chemical species for the efficient oxidation of water. In a similar manner to reaction centres in natural photosystems, molecular and metal oxide catalysts have been used to photochemically oxidize water. However, the various approaches involving the molecular design of ligands, surface modification and immobilization still have limitations in terms of catalytic efficiency and sustainability. Here, we demonstrate a biologically templated nanostructure for visible light-driven water oxidation that uses a genetically engineered M13 virus scaffold to mediate the co-assembly of zinc porphyrins (photosensitizer) and iridium oxide hydrosol clusters (catalyst). Porous polymer microgels are used as an immobilization matrix to improve the structural durability of the assembled nanostructures and to allow the materials to be recycled. Our results suggest that the biotemplated nanoscale assembly of functional components is a promising route to significantly improved photocatalytic water-splitting systems.


Subject(s)
Bacteriophage M13/metabolism , Light , Nanowires/chemistry , Porphyrins/metabolism , Water/chemistry , Bacteriophage M13/ultrastructure , Catalysis/radiation effects , Iridium/metabolism , Nanowires/ultrastructure , Oxidation-Reduction/radiation effects , Oxygen/analysis
15.
J Mater Chem ; 20(8): 1435-1437, 2010 Feb 28.
Article in English | MEDLINE | ID: mdl-25484524

ABSTRACT

Highly soluble, non-aggregated colloidal wurtzite InN nanocrystals were obtained through an ambient pressure, low-temperature method followed by post-synthesis treatment with nitric acid.

16.
Science ; 324(5930): 1051-5, 2009 May 22.
Article in English | MEDLINE | ID: mdl-19342549

ABSTRACT

Development of materials that deliver more energy at high rates is important for high-power applications, including portable electronic devices and hybrid electric vehicles. For lithium-ion (Li+) batteries, reducing material dimensions can boost Li+ ion and electron transfer in nanostructured electrodes. By manipulating two genes, we equipped viruses with peptide groups having affinity for single-walled carbon nanotubes (SWNTs) on one end and peptides capable of nucleating amorphous iron phosphate(a-FePO4) fused to the viral major coat protein. The virus clone with the greatest affinity toward SWNTs enabled power performance of a-FePO4 comparable to that of crystalline lithium iron phosphate (c-LiFePO4) and showed excellent capacity retention upon cycling at 1C. This environmentally benign low-temperature biological scaffold could facilitate fabrication of electrodes from materials previously excluded because of extremely low electronic conductivity.


Subject(s)
Bacteriophage M13/genetics , Bioelectric Energy Sources , Capsid Proteins/genetics , Electrodes , Lithium/chemistry , Nanotubes, Carbon , Nanowires , Bacteriophage M13/chemistry , Capsid Proteins/chemistry , Electric Conductivity , Electrochemistry , Ferrous Compounds/chemistry , Genes, Viral , Genetic Engineering , Metal Nanoparticles , Phosphates/chemistry , Silver
17.
Biomacromolecules ; 7(1): 14-7, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16398491

ABSTRACT

Biological scaffolds are used for the synthesis of inorganic materials due to their ability to self-assemble and nucleate crystal formation. We report the self-assembly of engineered M13 bacteriophage as a template for Co-Pt crystals. A M13 phage library with an octapeptide library on the major coat protein (pVIII) was used for selection of binders to cobalt ions. Fibrous structures with directionally ordered M13 phage were obtained by interaction with cobalt ions. Co-Pt alloys were synthesized on the fibrous scaffold, and their magnetic properties were characterized. The mineralization showed organized nanoparticles on fibrous bundles. This approach using the phage pVIII library allows for genetic selection that both induces assembly of the phage and directs mineralization of the selected inorganic material.


Subject(s)
Bacteriophage M13/drug effects , Cobalt/chemistry , Cobalt/pharmacology , Genetic Engineering , Platinum/chemistry , Platinum/pharmacology , Virus Assembly/drug effects , Bacteriophage M13/genetics , Bacteriophage M13/physiology , Bacteriophage M13/ultrastructure , Cations, Divalent/chemistry , Crystallization , Microscopy, Electron, Scanning Transmission , Nanostructures/chemistry , Nanostructures/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...