Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.411
Filter
1.
Phys Rev Lett ; 133(12): 123802, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39373430

ABSTRACT

The polarization control of micro- and nanolasers is an important topic in nanophotonics. Up to now, the simultaneous generation of two distinguishable orthogonally polarized lasing modes from a single organic microlaser remains a critical challenge. Here, we demonstrate simultaneously orthogonally polarized dual lasing from a microcavity filled with an organic single crystal exhibiting selective strong coupling. We show that the non-Hermiticity due to polarization-dependent losses leads to the formation of real and imaginary Fermi arcs with exceptional points. Simultaneous orthogonally polarized lasing becomes possible thanks to the eigenstate mixing by the photonic spin-orbit coupling at the imaginary Fermi arcs. Our work provides a novel way to develop linearly polarized lasers and paves the way for the future fundamental research in topological photonics, non-Hermitian optics, and other fields.

2.
Neuroradiology ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225815

ABSTRACT

OBJECTIVE: Research into the effectiveness and applicability of deep learning, radiomics, and their integrated models based on Magnetic Resonance Imaging (MRI) for preoperative differentiation between Primary Central Nervous System Lymphoma (PCNSL) and Glioblastoma (GBM), along with an exploration of the interpretability of these models. MATERIALS AND METHODS: A retrospective analysis was performed on MRI images and clinical data from 261 patients across two medical centers. The data were split into a training set (n = 153, medical center 1) and an external test set (n = 108, medical center 2). Radiomic features were extracted using Pyradiomics to build the Radiomics Model. Deep learning networks, including the transformer-based MobileVIT Model and Convolutional Neural Networks (CNN) based ConvNeXt Model, were trained separately. By applying the "late fusion" theory, the radiomics model and deep learning model were fused to produce the optimal Max-Fusion Model. Additionally, Shapley Additive exPlanations (SHAP) and Grad-CAM were employed for interpretability analysis. RESULTS: In the external test set, the Radiomics Model achieved an Area under the receiver operating characteristic curve (AUC) of 0.86, the MobileVIT Model had an AUC of 0.91, the ConvNeXt Model demonstrated an AUC of 0.89, and the Max-Fusion Model showed an AUC of 0.92. The Delong test revealed a significant difference in AUC between the Max-Fusion Model and the Radiomics Model (P = 0.02). CONCLUSION: The Max-Fusion Model, combining different models, presents superior performance in distinguishing PCNSL and GBM, highlighting the effectiveness of model fusion for enhanced decision-making in medical applications. CLINICAL RELEVANCE STATEMENT: The preoperative non-invasive differentiation between PCNSL and GBM assists clinicians in selecting appropriate treatment regimens and clinical management strategies.

3.
BMC Cancer ; 24(1): 1133, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261819

ABSTRACT

BACKGROUND: Cervical cancer, encompassing squamous cell carcinoma and endocervical adenocarcinoma (CESC), presents a considerable risk to the well-being of women. Recent studies have reported that squalene epoxidase (SQLE) is overexpressed in several cancers, which contributes to cancer development. METHODS: RNA sequencing data for SQLE were obtained from The Cancer Genome Atlas. In vitro experiments, including colorimetry, colony formation, Transwell, RT-qPCR, and Western blotting were performed. Furthermore, a transplanted CESC nude mouse model was constructed to validate the tumorigenic activity of SQLE in vivo. Associations among the SQLE expression profiles, differentially expressed genes (DEGs), immune infiltration, and chemosensitivity were examined. The prognostic value of genetic changes and DNA methylation in SQLE were also assessed. RESULTS: SQLE mRNA expression was significantly increased in CESC. ROC analysis revealed the strong diagnostic ability of SQLE toward CESC. Patients with high SQLE expression experienced shorter overall survival. The promotional effects of SQLE on cancer cell proliferation, metastasis, cholesterol synthesis, and EMT were emphasized. DEGs functional enrichment analysis revealed the signaling pathways and biological processes. Notably, a connection existed between the SQLE expression and the presence of immune cells as well as the activation of immune checkpoints. Increased SQLE expressions exhibited increased chemotherapeutic responses. SQLE methylation status was significantly associated with CESC prognosis. CONCLUSION: SQLE significantly affects CESC prognosis, malignant behavior, cholesterol synthesis, EMT, and immune infiltration; thereby offering diagnostic and indicator roles in CESC. Thus, SQLE can be a novel therapeutic target in CESC treatment.


Subject(s)
Biomarkers, Tumor , Cholesterol , Epithelial-Mesenchymal Transition , Squalene Monooxygenase , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/mortality , Female , Epithelial-Mesenchymal Transition/genetics , Animals , Prognosis , Squalene Monooxygenase/genetics , Squalene Monooxygenase/metabolism , Mice , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cholesterol/metabolism , Mice, Nude , Gene Expression Regulation, Neoplastic , DNA Methylation , Cell Line, Tumor , Cell Proliferation , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/immunology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism
4.
Cell Signal ; 124: 111398, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39265728

ABSTRACT

Angiogenesis plays a pivotal role in the progression and metastasis of solid cancers, including prostate cancer (PCa). While small extracellular vesicles derived from PCa cell lines induce a proangiogenic phenotype in vascular endothelial cells, the contribution of plasma exosomes from patients with PCa to this process remains unclear. Here, we successfully extracted and characterized plasma exosomes. Notably, a ring of PKH67-labeled exosomes was observed around the HUVEC nucleus using fluorescence microscopy, indicating the uptake of exosomes by HUVEC. At the cellular level, PCa plasma exosomes enhanced angiogenesis, proliferation, invasion, and migration of HUVEC cells. Moreover, PCa plasma exosomes promoted angiogenesis and aortic sprouting. MicroRNAs are the most common genetic material in exosomes, and to identify miRNAs associated with the angiogenic response, we performed small RNA sequencing followed by RT-qPCR and bioinformatics analysis. These analyses revealed distinct miRNA profiles in plasma exosomes from patients with PCa compared to healthy individuals. Notably, hsa-miR-184 emerged as a potential regulator implicated in the proangiogenic effects of PCa plasma exosomes.

5.
Front Pharmacol ; 15: 1428485, 2024.
Article in English | MEDLINE | ID: mdl-39309007

ABSTRACT

Introduction: Major depressive disorder (MDD) is a common and disabling mental health condition; the currently available treatments for MDD are insufficient to meet clinical needs due to their limited efficacy and slow onset of action. Hypidone hydrochloride (YL-0919) is a sigma-1 receptor agonist and a novel fast-acting antidepressant that is currently under clinical development. Methods: To further understand the fast-acting antidepressant activity of YL-0919, this study focused on the role of 5-HTergic neurons in the dorsal raphe nucleus (DRN) in mice. Using fiber photometry to assess neural activity in vivo and two behavioral assays (tail suspension test and forced swimming test) to evaluate antidepressant-like activity. Results: It was found that 3 or 7 days of YL-0919 treatment significantly activated serotonin (5-HT) neurons in the DRN and had significant antidepressant-like effects on mouse behaviors. Chemogenetic inhibition of 5-HTergic neurons in the DRN significantly blocked the antidepressant-like effect of YL-0919. In addition, YL-0919 treatment significantly increased the 5-HT levels in the prefrontal cortex (PFC). These changes were drastically different from those of the selective serotonin reuptake inhibitor (SSRI) fluoxetine, which suggested that the antidepressant-like effects of the two compounds were mechanistically different. Conclusion: Together, these results reveal a novel role of 5-HTergic neurons in the DRN in mediating the fast-acting antidepressant-like effects of YL-0919, revealing that these neurons are potential novel targets for the development of fast-acting antidepressants for the clinical management of MDD.

6.
World J Clin Cases ; 12(25): 5821-5831, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39247729

ABSTRACT

BACKGROUND: Pancreatic trauma (PT) is rare among traumatic injuries and has a low incidence, but it can still lead to severe infectious complications, resulting in a high mortality rate. Acute pancreatitis (AP) is a common complication after PT, and when combined with organ dysfunction and sepsis, it will result in a poorer prognosis. CASE SUMMARY: We report a 25-year-old patient with multiple organ injuries, including the pancreas, due to abdominal trauma, who developed necrotising pancreatitis secondary to emergency caesarean section, combined with intra-abdominal infection (IAI). The patient underwent performed percutaneous drainage, pancreatic necrotic tissue debridement, and abdominal infection foci debridement on the patient. CONCLUSION: We report a case of severe AP and IAI secondary to trauma. This patient was managed by a combination of conservative treatment such as antibiotic therapy and fluid support with surgery, and a better outcome was obtained.

7.
Membranes (Basel) ; 14(9)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39330537

ABSTRACT

Wastewater treatment plants produce high quantities of excess sludge. However, traditional sludge dewatering technology has high energy consumption and occupies a large area. Dead-end forward osmosis (DEFO) is an efficient and energy-saving deep dewatering technology for sludge. In this study, the reverse osmosis of salt ions in the draw solution was used to change the sludge cake structure and further reduce its moisture content in cake by releasing the bound water in cell. Three salts, NaCl, KCl, and CaCl2, were added to the excess sludge feed solution to explore the roles of the reverse osmosis of draw solutes in DEFO. When the added quantities of NaCl and CaCl2 were 15 and 10 mM, respectively, the moisture content of the sludge after dewatering decreased from 98.1% to 79.7% and 67.3%, respectively. However, KCl did not improve the sludge dewatering performance because of the "high K and low Na" phenomenon in biological cells. The water flux increased significantly for the binary draw solute involving NaCl and CaCl2 compared to the single draw solute. The extracellular polymer substances in the sludge changed the structure of the filter cake to improve the formation of water channels and decrease osmosis resistance, resulting in an increase in sludge dewatering efficiency. These findings provide support for improving the sludge dewatering performance of DEFO.

8.
Int J Mol Sci ; 25(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39273087

ABSTRACT

Activating enhancer-binding protein 2 (AP-2) is a family of transcription factors (TFs) that play crucial roles in regulating embryonic and oncogenic development. In addition to splice isoforms, five major family members encoded by the TFAP2A/B/C/D/E genes have been identified in humans, i.e., AP-2α/ß/γ/δ/ε. In general, the first three TFs have been studied more thoroughly than AP-2δ or AP-2ε. Currently, there is a relatively limited body of literature focusing on the AP-2 family in the context of gastroenterological research, and a comprehensive overview of the existing knowledge and recommendations for further research directions is lacking. Herein, we have collected available gastroenterological data on AP-2 TFs, discussed the latest medical applications of each family member, and proposed potential future directions. Research on AP-2 in gastrointestinal tumors has predominantly been focused on the two best-described family members, AP-2α and AP-2γ. Surprisingly, research in the past decade has highlighted the importance of AP-2ε in the drug resistance of gastric cancer (GC) and colorectal cancer (CRC). While numerous questions about gastroenterological disorders await elucidation, the available data undoubtedly open avenues for anti-cancer targeted therapy and overcoming chemotherapy resistance. In addition to gastrointestinal cancers, AP-2 family members (primarily AP-2ß and marginally AP-2γ) have been associated with other health issues such as obesity, type 2 diabetes, liver dysfunction, and pseudo-obstruction. On the other hand, AP-2δ has been poorly investigated in gastroenterological disorders, necessitating further research to delineate its role. In conclusion, despite the limited attention given to AP-2 in gastroenterology research, pivotal functions of these transcription factors have started to emerge and warrant further exploration in the future.


Subject(s)
Transcription Factor AP-2 , Humans , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , Gastrointestinal Diseases/genetics , Gastrointestinal Diseases/metabolism , Animals
9.
JMIR Public Health Surveill ; 10: e56283, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222341

ABSTRACT

BACKGROUND: Despite increasing awareness, silica dust-induced silicosis still contributes to the huge disease burden in China. Worryingly, recent silica dust exposure levels and silicosis risk in Chinese noncoal mines remain unclear. OBJECTIVE: We aimed to determine recent silica dust exposure levels and assess the risk of silicosis in Chinese noncoal mines. METHODS: Between May and December 2020, we conducted a retrospective cohort study on 3 noncoal mines and 1 public hospital to establish, using multivariable Cox regression analyses, prediction formulas of the silicosis cumulative hazard ratio (H) and incidence (I) and a cross-sectional study on 155 noncoal mines in 10 Chinese provinces to determine the prevalence of silica dust exposure (PDE), free silica content, and total dust and respirable dust concentrations. The qualitative risk of silicosis was assessed using the International Mining and Metals Commission's risk-rating table and the occupational hazard risk index; the quantitative risk was assessed using prediction formulas. RESULTS: Kaplan-Meier survival analysis revealed significant differences in the silicosis probability between silica dust-exposed male and female miners (log-rank test χ21=7.52, P=.01). A total of 126 noncoal mines, with 29,835 miners and 4623 dust samples, were included; 13,037 (43.7%) miners were exposed to silica dust, of which 12,952 (99.3%) were male. The median PDE, free silica content, total dust concentration, and respirable dust concentration were 61.6%, 27.6%, 1.30 mg/m3, and 0.58 mg/m3, respectively, indicating that miners in nonmetal, nonferrous metal, small, and open-pit mines suffer high-level exposure to silica dust. Comprehensive qualitative risk assessment showed noncoal miners had a medium risk of silicosis, and the risks caused by total silica dust and respirable silica dust exposure were high and medium, respectively. When predicting H and I over the next 10, 20, and 30 years, we assumed that the miner gender was male. Under exposure to current total silica dust concentrations, median I10, I20, and I30 would be 6.8%, 25.1%, and 49.9%, respectively. Under exposure to current respirable silica dust concentrations, median I10, I20, and I30 would be 6.8%, 27.7%, and 57.4%, respectively. These findings showed that miners in nonmetal, nonferrous metal, small, and open-pit mines have a higher I and higher qualitative silicosis risk. CONCLUSIONS: Chinese noncoal miners, especially those in nonmetal, nonferrous metal, small, and open-pit mines, still suffer high-level exposure to silica dust and a medium-level risk of silicosis. Data of both total silica dust and respirable silica dust are vital for occupational health risk assessment in order to devise effective control measures to reduce noncoal mine silica dust levels, improve miners' working environment, and reduce the risk of silicosis.


Subject(s)
Dust , Mining , Occupational Exposure , Silicon Dioxide , Silicosis , Humans , Silicosis/epidemiology , Silicosis/etiology , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Occupational Exposure/statistics & numerical data , Silicon Dioxide/analysis , Silicon Dioxide/adverse effects , Dust/analysis , Male , China/epidemiology , Female , Risk Assessment/methods , Retrospective Studies , Mining/statistics & numerical data , Adult , Middle Aged , Cross-Sectional Studies , Cohort Studies
10.
Exp Cell Res ; 442(2): 114231, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39222869

ABSTRACT

Prostate cancer (PCa) is threatening the health of millions of people, the pathological mechanism of prostate cancer has not been fully elaborated, and needs to be further explored. Here, we found that the expression of DUSP26 is dramatically suppressed, and a positive connection of its expression with PCa prognosis was also observed. In vitro, overexpression of DUSP26 significantly inhibited the proliferative, migrative, and invasive capacities of PC3 cells, DUSP26 silencing presented opposite results. Tumor formation experiments in subcutaneous nude mice demonstrated that DUSP26 overexpression could significantly suppress PC3 growth in vivo. Moreover, the mechanism of DUSP26 gene and PCa was discovered by RNA-Seq analysis. We found that DUSP26 significantly inhibited MAPK signaling pathway activation, and further experiments displayed that DUSP26 could impair TAK1, p38, and JNK phosphorylation. Interestingly, treatment with the TAK1 inhibitor (iTAK1) attenuated the effect of DUSP26 on PC3 cells. Together, these results suggested that DUSP26 may serve as a novel therapeutic target for PC3 cell type PCa, the underlying mechanism may be through TAK1-JNK/p38 signaling.

11.
Br J Pharmacol ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238235

ABSTRACT

BACKGROUND AND PURPOSE: The emerging antidepressant effects of ketamine have inspired tremendous interest in its underlying neurobiological mechanisms, although the involvement of 5-HT in the antidepressant effects of ketamine remains unclear. EXPERIMENTAL APPROACH: The chronic restraint stress procedure was performed to induce depression-like behaviours in mice. OFT, FST, TST, and NSFT tests were used to evaluate the antidepressant-like effects of ketamine. Tph2 knockout or depletion of 5-HT by PCPA and 5,7-DHT were used to manipulate the brain 5-HT system. ELISA and fibre photometry recordings were used to measure extracellular 5-HT levels in the brain. KEY RESULTS: 60 min after injection, ketamine (10 mg·kg-1, i.p.) produced rapid antidepressant-like effects and increased brain 5-HT levels. After 24 h, ketamine significantly reduced immobility time in TST and FST tests and increased brain 5-HT levels, as measured by ELISA and fibre photometry recordings. The sustained (24 h) but not rapid (60 min) antidepressant-like effects of ketamine were abrogated by PCPA and 5,7-DHT, or by Tph2 knockout. Importantly, NBQX (10 mg·kg-1, i.p.), an AMPA receptor antagonist, significantly inhibited the effect of ketamine on brain 5-HT levels and abolished the sustained antidepressant-like effects of ketamine in naïve or CRS-treated mice. CONCLUSION AND IMPLICATIONS: This study confirms the requirement of serotonergic neurotransmission for the sustained antidepressant-like effects of ketamine, which appears to involve AMPA receptors, and provides avenues to search for antidepressant pharmacological targets.

12.
Carbohydr Polym ; 344: 122527, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218534

ABSTRACT

The root of Millettia pulchra (YLS) has been traditionally used as a folk medicine for the treatment of depression and insomnia in the Zhuang nationality of China, and its polysaccharides have potential antidepressant effect. In this study, a novel homogeneous polysaccharide (YLP-1) was purified from the crude polysaccharides of YLS, and it is mainly composed of glucose, arabinose and mannose with molar ratio of 87.25%, 10.77%, and 1.98%, respectively. YLP-1 is a novel α-glucan with the backbone of 1,4-Glcp and branched at C6 of 1,4,6-Glcp to combine 1,4-Manp and 1,5-Araf. The microstructure of YLP-1 displayed a uniform ellipsoidal-like chain morphology and dispersed uniformly in solution. YLP-1 effectively ameliorated depression-like ethological behaviors and restored the decreased catecholamine levels in chronic variable stress (CVS)-induced depression rats. Additionally, it significantly improved the disturbance of gut microbiota induced by CVS stimuli, particularly affecting bacteria that produce short-chain fatty acids (SCFAs), such as bacteria species Lactobacillus spp.. In vitro fermentation study further confirmed that YLP-1 intake could promote SCFAs production by Lactobacillus spp. YLP-1 also mitigated the disruption of tryptophan metabolites in urine and serum. These findings provide evidences for the further development of YLP-1 as a macromolecular antidepressant drug.


Subject(s)
Antidepressive Agents , Fatty Acids, Volatile , Gastrointestinal Microbiome , Millettia , Polysaccharides , Tryptophan , Animals , Gastrointestinal Microbiome/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/chemistry , Male , Rats , Polysaccharides/pharmacology , Polysaccharides/chemistry , Millettia/chemistry , Tryptophan/metabolism , Fatty Acids, Volatile/metabolism , Depression/drug therapy , Depression/metabolism , Rats, Sprague-Dawley
13.
World J Diabetes ; 15(8): 1824-1828, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39192860

ABSTRACT

This letter discusses the publication by Feng et al. Iodine, selenium, and vitamin D are closely associated with thyroid hormone production in humans; however, the efficacy of selenium and vitamin D supplementation for type 2 diabetes mellitus (T2DM) patients with Hashimoto's thyroiditis (HT) remains controversial. In the retrospective study we discuss herein, the authors highlighted significant improvements in thyroid function, thyroid antibodies, blood glucose, and blood lipid in T2DM patients with HT following addition of vitamin D and selenium to their antidiabetic regimens, underscoring the value of these supplements. Our team is currently engaged in research exploring the relationship between micronutrients and HT, and we have obtained invaluable insights from the aforementioned study. Based on this research and current literature, we recommend a regimen of 4000 IU/day of vitamin D and 100-200 µg/day of selenium for over three months to six months for patients with HT, particularly for those with concurrent T2DM.

14.
Int J Numer Method Biomed Eng ; 40(10): e3862, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142807

ABSTRACT

Surgery of jawbones has a high potential risk of causing complications associated with temporomandibular joint disorder (TMD). The objective of this study was to investigate the effects of two drive modeling methods on the biomechanical behavior of the temporomandibular joint (TMJ) including articular disc during mandibular movements. A finite element (FE) model from a healthy human computed tomography was used to evaluate TMJ dynamic using two methods, namely, a conventional spatial-oriented method (displacement-driven) and a compliant muscle-initiated method (masticatory muscle-driven). The same virtual FE model was 3D printed and a custom designed experimental platform was established to validate the accuracy of experimental and theoretical results of the TMJ biomechanics during mandibular movements. The results show that stress distributed to TMJ and articular disc from mandibular movements provided better representation from the muscle-driving approach than those of the displacement-driven modeling. The simulation and experimental data exhibited significant strong correlations during opening, protrusion, and laterotrusion (with canonical correlation coefficients of 0.994, 0.993, and 0.932, respectively). The use of muscle-driven modeling holds promise for more accurate forecasting of stress analysis of TMJ and articular disc during mandibular movements. The compliant approach to analyze TMJ dynamics would potentially contribute to clinic diagnosis and prediction of TMD resulting from occlusal disease and jawbone surgery such as orthognathic surgery or tumor resection.


Subject(s)
Finite Element Analysis , Masticatory Muscles , Temporomandibular Joint , Humans , Temporomandibular Joint/physiopathology , Temporomandibular Joint/physiology , Biomechanical Phenomena/physiology , Masticatory Muscles/physiology , Masticatory Muscles/physiopathology , Movement/physiology , Models, Biological , Tomography, X-Ray Computed
15.
Cell Death Differ ; 31(9): 1184-1201, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39103535

ABSTRACT

Ferroptosis holds significant potential for application in cancer therapy. However, ferroptosis inducers are not cell-specific and can cause phospholipid peroxidation in both tumor and non-tumor cells. This limitation greatly restricts the use of ferroptosis therapy as a safe and effective anticancer strategy. Our previous study demonstrated that macrophages can engulf ferroptotic cells through Toll-like receptor 2 (TLR2). Despite this advancement, the precise mechanism by which phospholipid peroxidation in macrophages affects their phagocytotic capability during treatment of tumors with ferroptotic agents is still unknown. Here, we utilized flow sorting combined with redox phospholipidomics to determine that phospholipid peroxidation in tumor microenvironment (TME) macrophages impaired the macrophages ability to eliminate ferroptotic tumor cells by phagocytosis, ultimately fostering tumor resistance to ferroptosis therapy. Mechanistically, the accumulation of phospholipid peroxidation in the macrophage endoplasmic reticulum (ER) repressed TLR2 trafficking to the plasma membrane and caused its retention in the ER by disrupting the interaction between TLR2 and its chaperone CNPY3. Subsequently, this ER-retained TLR2 recruited E3 ligase MARCH6 and initiated the proteasome-dependent degradation. Using redox phospholipidomics, we identified 1-steaoryl-2-15-HpETE-sn-glycero-3-phosphatidylethanolamine (SAPE-OOH) as the crucial mediator of these effects. Conclusively, our discovery elucidates a novel molecular mechanism underlying macrophage phospholipid peroxidation-induced tumor resistance to ferroptosis therapy and highlights the TLR2-MARCH6 axis as a potential therapeutic target for cancer therapy.


Subject(s)
Ferroptosis , Lipid Peroxidation , Macrophages , Phagocytosis , Phospholipids , Phospholipids/metabolism , Macrophages/metabolism , Animals , Mice , Humans , Toll-Like Receptor 2/metabolism , Tumor Microenvironment , Cell Line, Tumor , Mice, Inbred C57BL , Neoplasms/metabolism , Neoplasms/pathology , RAW 264.7 Cells
16.
World J Diabetes ; 15(7): 1551-1561, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39099830

ABSTRACT

BACKGROUND: The impact of type 1 diabetes (T1D) on inflammatory bowel disease (IBD) remains unclear. AIM: To analyze the causal relationship between T1D and IBD using Mendelian ran-domization (MR). METHODS: Single nucleotide polymorphisms were sourced from FinnGen for T1D, IBD, ulcerative colitis (UC) and Crohn's disease (CD). Inverse variance-weighted, MR-Egger, and weighted median tests were used to assess exposure-outcome causality. The MR-Egger intercept was used to assess horizontal pleiotropy. Co-chran's Q and leave-one-out method were used to analyze heterogeneity and sensitivity, respectively. RESULTS: Our MR analysis indicated that T1D was associated with a reduced risk of IBD [odds ratio (OR): 0.959; 95% confidence interval (CI): 0.938-0.980; P < 0.001] and UC (OR: 0.960; 95%CI: 0.929-0.992; P = 0.015), with no significant association observed in terms of CD risk (OR: 0.966; 95%CI: 0.913-1.022; P = 0.227). The MR-Egger intercept showed no horizontal pleiotropy (P > 0.05). Cochran's Q and leave-one-out sensitivity analyses showed that the results were not heterogeneous (P > 0.05) and were robust. CONCLUSION: This MR analysis suggests that T1D serves as a potential protective factor against IBD and UC but is independent of CD.

17.
J Sci Food Agric ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39118479

ABSTRACT

BACKGROUND: Sanqi, the root of Panax notoginseng, has long been recognized for its therapeutic effects on cardiovascular diseases. Saponins, including ginsenosides and notoginsenosides, are the main bioactive components of P. notoginseng. The biosynthesis of saponins is closely related to the defense responses orchestrated by endogenous hormones. RESULTS: To provide new insights into the underlying role of phytohormone jasmonic acid (JA) in the synthesis and regulation of saponins, we performed an ultra-performance liquid chromatography analysis of different tissues of P. notoginseng aged 2-4 years. Moreover, by combined evaluation of saponin content and transcriptome profiling of each tissue, the spatial and temporal distribution of saponins was analyzed. N notoginsenoside R1, ginsenoside Rb1 and ginsenoside Rd accumulated in the underground tissues, including the root, tuqi, fibril and rhizome. In agreement with this data, the corresponding genes of the endogenous hormone JAs, especially coronatine insensitive 1 (COI1) and myelocytomatosis proteins 2 (MYC2), were predominantly expressed in the underground tissues. The tissue- and age-specific distribution of saponins was consistent with the expression of genes involved in JA biosynthetic, metabolic and signaling pathways. CONCLUSION: The present study has revealed the temporal and spatial effects of endogenous phtohormones in the synthesis and regulation of notoginsenosides, which will provide a significant impact on improving the ecological planting technology, cultivating new high-quality varieties and protecting the rare resources of medicinal P. notoginseng. © 2024 Society of Chemical Industry.

18.
In Vivo ; 38(5): 2446-2454, 2024.
Article in English | MEDLINE | ID: mdl-39187324

ABSTRACT

BACKGROUND/AIM: Thyroid diseases are prevalent endocrine disorders that significantly affect overall health. Although the impact of pre-existing thyroid dysfunction on total knee replacement (TKR) outcomes has been studied, the potential for TKR to increase the risk of developing thyroid disorders remains unexplored. PATIENTS AND METHODS: We examined electronic medical records from a large U.S. research network in the TriNetX research network. The study focused on patients with osteoarthritis, comparing those who had total knee replacement surgery (TKR) between 2005 and 2018 to a non-TKR group who did not have the surgery. Propensity score matching was employed to control for critical confounders. The hazard ratios (HRs) for the risk of thyroid diseases in TKR patients versus non-TKR controls were assessed. RESULTS: Post-matching, the TKR cohort demonstrated a significantly higher risk of developing thyroid diseases compared to the non-TKR cohort (unadjusted HR=1.218, 95%CI=1.169-1.269). This elevated risk persisted after adjusting for confounders (adjusted HR=1.126, 95%CI=1.061-1.196). Stratification analysis indicated that female TKR patients and those aged ≥65 years were at higher risk of developing thyroid diseases than their respective control groups. CONCLUSION: This study suggests a potential link between TKR and an increased risk of thyroid diseases, particularly among older adults and females. Potential mechanisms include inflammatory processes, surgical stress, autoimmune responses, and pharmacological effects. Healthcare providers should be vigilant in monitoring and managing thyroid dysfunction in TKR patients. Further research is necessary to elucidate the underlying mechanisms and develop preventive strategies.


Subject(s)
Arthroplasty, Replacement, Knee , Propensity Score , Thyroid Diseases , Humans , Arthroplasty, Replacement, Knee/adverse effects , Female , Male , Aged , Thyroid Diseases/surgery , Thyroid Diseases/epidemiology , Middle Aged , Risk Factors , Cohort Studies , Osteoarthritis, Knee/surgery , Osteoarthritis, Knee/epidemiology , Osteoarthritis, Knee/etiology , Proportional Hazards Models
19.
Am J Hypertens ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136164

ABSTRACT

BACKGROUND: Elevated soluble stimulating factor 2 (sST2) level is observed in cardiovascular diseases, such as heart failure and acute coronary syndrome, which reflects myocardial fibrosis and hypertrophy, indicating adverse clinical outcomes. However, the association between sST2 and hypertensive heart disease are less understood. This study aimed to determine the relationship of sST2 with left ventricular hypertrophy (LVH) and geometric remodeling in essential hypertension (EH). METHODS: We enrolled 483 patients (aged 18-80 years; 51.35% female). sST2 measurements and echocardiographic analyses were performed. RESULTS: Stepwise multiple linear regression analysis showed significant associations between sST2, left ventricular (LV) mass, and LV mass index. The prevalence of LVH and concentric hypertrophy (CH) increased with higher sST2 grade levels (p for trend<0.05). Logistic regression analysis suggested that the highest tertile of sST2 was significantly associated with increased LVH risk, compared with the lowest tertile (multivariate-adjusted odds ratio [OR] of highest group: 6.61; p<0.001). Similar results were observed in the left ventricular geometric remodeling; the highest tertile of sST2 was significantly associated with increased CH risk (multivariate-adjusted OR of highest group: 5.80; p<0.001). The receiver operating characteristic analysis results revealed that sST2 had potential predictive value for LVH (area under the curve [AUC]: 0.752, 95% confidence interval [CI]: 0.704-0.800) and CH (AUC: 0.750, 95% CI: 0.699-0.802) in patients with EH. CONCLUSIONS: High sST2 level is strongly related to LVH and CH in patients with EH and can be used as a biomarker for the diagnosis and risk assessment of hypertensive heart disease.

20.
Clin Transl Oncol ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196498

ABSTRACT

INTRODUCTION: This multi-center study aims to explore the roles of plasma exosomal microRNAs (miRNAs), ultrasound (US) radiomics, and total prostate-specific antigen (tPSA) levels in early prostate cancer detection. METHODS: We analyzed the publicly available dataset GSE112264 to identify the differentially expressed miRNAs associated with prostate cancer. Then, PyRadiomics was used to extract image features, and least absolute shrinkage and selection operator (LASSO) was used to screen the data. Subsequently, according to strict inclusion and exclusion criteria, the internal dataset (n = 199) was used to construct a diagnostic model, and the receiver operating characteristic (ROC) curve, calibration curve, decision curve analysis (DCA), and DeLong test were used to evaluate its diagnostic performance. Finally, we used an external dataset (n = 158) for further validation. RESULTS: The number of features extracted by PyRadiomics was 851, and the number of features screened by LASSO was 23. We combined the hsa-miR-320c, hsa-miR-944, radiomics, and tPSA features to construct a joint model. The area under the ROC curve of the combined model was 0.935. In the internal validation, the area under the curve (AUC) of the training set was 0.943, and the AUC of the test set was 0.946. The AUC of the external data set was 0.910. The calibration curve and decision curve were consistent with the performance of the combined model. There was a significant difference in the prediction ability between the combined prediction model and the single index prediction model, indicating the high credibility and accuracy of the combined model in predicting PCa. CONCLUSIONS: The combined prediction model, consisting of plasma exosomal miRNAs (hsa-miR-320c and hsa-miR-944), US radiomics, and clinical tPSA, can be utilized for the early diagnosis of prostate cancer.

SELECTION OF CITATIONS
SEARCH DETAIL