Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ChemistryOpen ; : e202300246, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38377228

ABSTRACT

The application of ultraviolet (UV) light for the decontamination of chemical warfare agents (CWAs) has gained recognition as an effective method, especially for treating hard-to-reach areas where wet chemical methods are impractical. In this study, TiO2 /Ti was employed as a model catalyst, which was contaminated with 2-chloroethyl phenyl sulfide (CEPS), and subjected to photocatalytic decontamination using both UVB and UVC light. Additionally, photocatalytic decontamination efficiency by introducing Au, Pt, and Cu onto the TiO2 /Ti surface was explored. During the photodecomposition process under UVC light, at least eight distinct secondary byproducts were identified. It was observed that the introduction of overlayer metals did not significantly enhance the photodecomposition under UVC light instead overlaid Au exhibited substantially improved activity under UVB light. Whereas, photodecomposition process under UVB light, only five secondary products were detected, including novel compounds with sulfoxide and sulfone functional groups. This novel study offers valuable insights into the generation of secondary products and sheds light on the roles of overlayer metals and photon wavelength in the photodecontamination process of CWA.

2.
Adv Healthc Mater ; 12(7): e2201697, 2023 03.
Article in English | MEDLINE | ID: mdl-36538487

ABSTRACT

Despite the minimized puncture sizes and high efficiency, microneedle (MN) patches have not been used to inject hemostatic drugs into bleeding wounds because they easily destroy capillaries when a tissue is pierced. In this study, a shelf-stable dissolving MN patch is developed to prevent rebleeding during an emergency treatment. A minimally and site-selectively invasive hemostatic drug delivery system is established by using a peripheral MN (p-MN) patch that does not directly intrude the wound site but enables topical drug absorption in the damaged capillaries. The invasiveness of MNs is histologically examined by using a bleeding liver of a Sprague-Dawley (SD) rat as an extreme wound model in vivo. The skin penetration force is quantified to demonstrate that the administration of the p-MN patch is milder than that of the conventional MN patch. Hemostatic performance is systematically studied by analyzing bleeding weight and time and comparing them with that of conventional hemostasis methods. The superior performance of a p-MN for the heparin-pretreated SD rat model is demonstrated by intravenous injection in vivo.


Subject(s)
Hemostatics , Skin , Rats , Animals , Administration, Cutaneous , Rats, Sprague-Dawley , Drug Delivery Systems/methods , Needles , Hemostasis , Hemostatics/pharmacology
3.
Sensors (Basel) ; 19(11)2019 May 31.
Article in English | MEDLINE | ID: mdl-31159320

ABSTRACT

Magnetorheological gel (MRG) is a smart material that can change its stiffness property by external magnetic field and has been applied as a smart rubber in suppressing vibration. Recent studies show that the electrical resistance of MRG also can be affected with external magnetic field. Thus, this study aimed to conduct analysis on MRG resistance variation due to external magnetic field with DC and AC input voltage. With an DC input voltage, the resistance change due to magnetic field was modeled. In addition, the capacitance variation of the material was observed. The impedance of MRG due to AC input voltage was analyzed and was observed that the impedance of MRG was affected by both the magnetic field and the input frequency. With the experiment data, the impedance modeling of MRG in frequency domain was derived. Based on experiment results, the performance and limitation of MRG as a magnetometer sensor are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...