Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315048

ABSTRACT

Developing a superomniphobic surface that exceeds the static and dynamic repellency observed in nature's springtails for various liquids presents a significant challenge in the realm of surface and interface science. However, progress in this field has been particularly limited when dealing with low-surface-tension liquids. This is because dynamic repellency values are typically at least 2 orders of magnitude lower than those observed with water droplets. Our study introduces an innovative hierarchical topography demonstrating exceptional dynamic repellency to low-surface-tension liquids. Inspired by the structural advantages found in springtails, we achieve a static contact angle of >160° and the complete rebound of droplet impact with a Weber number (We) of ∼104 using ethanol. These results surpass all existing benchmarks that have been reported thus far, including those of natural surfaces. The key insight from our research is the vital role of the microscale air pocket size, governed by wrinkle wavelength, in both static and dynamic repellency. Additionally, nanoscale air pockets within serif-T nanostructures prove to be essential for achieving omniphobicity. Our investigations into the wetting dynamics of ethanol droplets further reveal aspects such as the reduction in contact time and the occurrence of a fragmentation phenomenon beyond We ∼ 350, which has not been previously observed.

2.
Angew Chem Int Ed Engl ; 63(1): e202316264, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37983973

ABSTRACT

The local confinement effect, which can generate a high concentration of hydroxide ions and reaction intermediates near the catalyst surface, is an important strategy for converting CO2 into multi-carbon products in electrocatalytic CO2 reduction. Therefore, understanding how the shape and dimension of the confinement geometry affect the product selectivity is crucial. In this study, we report for the first time the effect of the shape (degree of confinement) and dimension of the confined space on the product selectivity without changing the intrinsic property of Cu. We demonstrate that geometry influences the outcomes of products, such as CH4 , C2 H4 , and EtOH, in different ways: the selectivity of CH4 and EtOH is affected by shape, while the selectivity of C2 H4 is influenced by dimension of geometry predominantly. These phenomena are demonstrated, both experimentally and through simulation, to be induced by the local confinement effect within the confined structure. Our geometry model could serve as basis for designing the confined structures tailored for the production of specific products.

3.
Adv Healthc Mater ; 12(12): e2202371, 2023 05.
Article in English | MEDLINE | ID: mdl-36652539

ABSTRACT

Enhancing cardiomyocyte (CM) maturation by topographical cues is a critical issue in cardiac tissue engineering. Thus far, single-scale topographies with a broad range of feature shapes and dimensions have been utilized including grooves, pillars, and fibers. This study reports for the first time a hierarchical structure composed of nano-pillars (nPs) on micro-wrinkles (µWs) for effective maturation of CMs. Through capillary force lithography followed by a wrinkling process, vast size ranges of topographies are fabricated, and the responses of CMs are systematically investigated. Maturation of CMs on the hierarchical structures is highly enhanced compared to a single-scale topography: cardiac differentiation of H9C2s (rat cardiomyocytes) on the hierarchical topography is ≈ 2.8 and ≈ 1.9 times higher than those consisting of single-scale µWs and nPs. Both nPs and µWs have important roles in cardiac maturation, and the aspect ratio (height/diameter) of the nPs and the wavelength of the µWs are important in CM maturation. This enhancement is caused by strong focal adhesion and nucleus mediated mechanotransduction of CMs from the confinement effects of the different wavelengths of µWs and the cellular membrane protrusion on the nPs. This study demonstrates how a large family of hierarchical structures is used for cardiac maturation.


Subject(s)
Mechanotransduction, Cellular , Myocytes, Cardiac , Rats , Animals , Tissue Engineering/methods , Cell Differentiation
4.
Nano Lett ; 22(3): 1174-1182, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35073103

ABSTRACT

The optimal architecture of three-dimensional (3D) interface between a polymer electrolyte membrane (PEM) and catalyst layer (CL) is one of the most important issues to improve PEM fuel cells' (PEMFCs) performance. Here, we report the fabrication of hierarchical wrinkled PEM/CL interface over a large area. We fabricated the hierarchical wrinkles on a multiscale from nanometers to micrometers by bottom-up-based facile, scalable, and simple method. Notably, it allows one to go beyond the limit of the catalyst utilization by extremely enlarged interfacial area. The resulting hierarchical wrinkled PEM/CL displays a dramatically increased electrochemically active surface area (ECSA) and power performance by the enhancement factors of 89% and 67% compared with those of flat interface, which is one of the best enhancements compared to previous PEMFCs. We believe the scalability of hierarchical wrinkled interface can be exploited to design advanced 3D interfaces for high-performance PEMFCs even with ultralow Pt-loading.

5.
ACS Appl Mater Interfaces ; 11(19): 17247-17255, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31009192

ABSTRACT

As neural stem cells (NSCs) interact with biophysical cues from their niche during development, it is important to understand the biomolecular mechanism of how the NSCs process these biophysical cues to regulate their behaviors. In particular, anisotropic geometric cues in micro-/nanoscale have been utilized to investigate the biophysical effect of the structure on NSCs behaviors. Here, a series of new nanoscale anisotropic wrinkle structures with the a range of wavelength scales (from 50 nm to 37 µm) was developed to demonstrate the effect of the anisotropic nanostructure on the fate commitment of NSCs. Intriguingly, two distinct characteristic length scales promoted the neurogenesis. Each wavelength scale showed a striking variation in terms of dependency on the directionality of the structures, suggesting the existence of at least two different ways in the processing of anisotropic geometries for neurogenesis. Furthermore, the combined effect of the two distinctive length scales was observed by employing hierarchical multiscale wrinkle structures with two characteristic neurogenesis-promoting wavelengths. Taken together, the wrinkle structure system developed in this study can serve as an effective platform to advance the understanding of how cells sense anisotropic geometries for their specific cellular behaviors. Furthermore, this could provide clues for improving nerve regeneration system of stem cell therapies.


Subject(s)
Nanostructures/chemistry , Nerve Regeneration , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Anisotropy , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Lineage/drug effects , Cell Proliferation/drug effects , Focal Adhesion Kinase 1/genetics , Gene Expression Regulation, Developmental/drug effects , Humans , Neural Stem Cells/metabolism , Stem Cell Transplantation
6.
ACS Appl Mater Interfaces ; 11(7): 7546-7552, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30694642

ABSTRACT

Transition metal dichalcogenides (TMDs) are emerging two-dimensional materials with potential use for the hydrogen evolution reaction (HER) because they express a desired binding energy with protons. To date, TMD-based HER catalytic performance has been enhanced mostly by chemical modification, such as introducing defects, doping, and phase control. Herein, we enhanced the HER performance by precise control of wettability via hierarchical wrinkling. This hierarchical wrinkling confers tunability of the receding contact angle (2-30°) by controlling the wavelength of the hierarchical wrinkles. Minimization of the receding contact angle is directly related to overpotential reduction on the MoS2 wrinkles through gas detachment from the catalytic surface. Unlike in previous studies, in this work, we demonstrated the effect of wettability only without changing other parameters such as surface chemistry. We showed that our method can be applied to other TMD materials such as WS2. This study will contribute to future TMD-based catalyst applications, such as hydrogen evolution, CO2 reduction, and oxygen evolution.

7.
Sci Adv ; 4(8): eaat4978, 2018 08.
Article in English | MEDLINE | ID: mdl-30151429

ABSTRACT

Both high static repellency and pressure resistance are critical to achieving a high-performance omniphobic surface. The cuticles of springtails have both of these features, which result from their hierarchical structure composed of primary doubly reentrant nanostructures on secondary microgrooves. Despite intensive efforts, none of the previous studies that were inspired by the springtail were able to simultaneously achieve both high static repellency and pressure resistance because of a general trade-off between these characteristics. We demonstrate for the first time a springtail-inspired superomniphobic surface displaying both features by fabricating a hierarchical system consisting of serif-T-shaped nanostructures on microscale wrinkles, overcoming previous limitations. Our biomimetic strategy yielded a surface showing high repellency to diverse liquids, from water to ethanol, with a contact angle above 150°. Simultaneously, the surface was able to endure extreme pressure resulting from the impacts of drops of water and of ethylene glycol with We >> 200, and of ethanol with We ~ 53, which is the highest pressure resistance ever reported. Overall, the omniphobicity of our springtail-inspired fabricated system was found to be superior to that of the natural springtail cuticle itself.

SELECTION OF CITATIONS
SEARCH DETAIL
...