Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 15(5): 1017-1026, 2021 10.
Article in English | MEDLINE | ID: mdl-34570708

ABSTRACT

In this paper, a microwave fluidic glucose sensor based on a microwave resonator coupled with an interferometric system is proposed for sensitivity enhancement. The proposed glucose sensor consists of two parts: a sensing part and a sensitivity enhancement part. The former is composed of a rectangular complementary split ring resonator (CSRR), and the latter is composed of a variable attenuator, a variable phase shifter, two hybrid couplers, and an RF power detector. Because the variation in the electrical properties, which is utilized in the microwave detection scheme, with glucose concentration over the possible concentration range in the human body is very small, improvement of the sensitivity is critical for practical use. Thus, the effective sensing area of the rectangular CSRR is determined by considering the electric field distribution. In addition, magnitude and phase conditions for the effective sensitivity enhancement are derived from a mathematical analysis of the proposed interferometric system. In the present experiment, aimed at demonstrating the detection performance as a function of the glucose concentration in the range of 0 mg/dL to 400 mg/dL, the sensitivity is significantly improved by 48 times by applying the derived conditions for effective sensitivity enhancement. Furthermore, the accuracy of the proposed glucose sensor for glucose concentrations at a step of 100 mg/dL is verified by the Clarke error grid. Based on the measurement results, the proposed glucose sensor is demonstrated to be applicable to noninvasive and continuous monitoring in practical environments.


Subject(s)
Biosensing Techniques , Microwaves , Electricity , Glucose , Humans
2.
Materials (Basel) ; 13(12)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32630590

ABSTRACT

In this review, the advances in radio-frequency (RF) /microwave chemical gas sensors using conducting polymers are discussed. First, the introduction of various conducting polymers is described. Only polyaniline (PANi), polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT), which are mainly used for gas sensors in RF/microwave region, are focused in this review. Sensing mechanism of the three conducting polymers are presented. And the RF/microwave characteristics and RF/microwave applications of the three conducting polymers are discussed. Moreover, the gas sensors using conducting polymers in RF/microwave frequencies are described. Finally, the the challenges and the prospects of the next generation of the RF/microwave based chemical sensors for wireless applications are proposed.

3.
IEEE Trans Biomed Circuits Syst ; 13(3): 493-502, 2019 06.
Article in English | MEDLINE | ID: mdl-30946676

ABSTRACT

In this paper, a radio frequency vital sign sensor based on double voltage-controlled oscillators (VCOs) combined with a switchable phase-locked loop (PLL) is proposed for a noncontact remote vital sign sensing system. Our sensing system primarily detects the periodic movements of the human lungs and the hearts via the impedance variation of the resonator. With a change in impedance, both the VCO oscillation frequency and the PLL feedback voltage also change. Thus, by tracking the feedback voltage of the PLL, breath and heart rate signals can be acquired simultaneously. However, as the distance between the body and the sensor varies, there are certain points with minimal sensitivity, making it is quite difficult to detect vital signs. These points, called impedance null points, periodically occur at distances proportional to the wavelength. To overcome the impedance null point problem, two resonators operating at different frequencies, 2.40 and 2.76 GHz, are employed as receiving components. In an experiment to investigate the sensing performance as a function of distance, the measurement distance was accurately controlled by a linear actuator. Furthermore, to evaluate the sensing performance in a real environment, experiments were carried out with a male and a female subject in a static vehicle. To demonstrate the real-time vital sign monitoring capability, spectrograms were utilized, and the accuracy was assessed relative to reference sensors. Based on the results, it is demonstrated that the proposed remote sensor can reliably detect vital signs in a real vehicle environment.


Subject(s)
Automobile Driving , Equipment Design , Heart Rate , Respiratory Mechanics , Wearable Electronic Devices , Female , Humans , Male
4.
Sensors (Basel) ; 18(11)2018 Nov 09.
Article in English | MEDLINE | ID: mdl-30423976

ABSTRACT

In this paper, a fluidic glucose sensor that is based on a complementary split-ring resonator (CSRR) is proposed for the microwave frequency region. The detection of glucose with different concentrations from 0 mg/dL to 400 mg/dL in a non-invasive manner is possible by introducing a fluidic system. The glucose concentration can be continuously monitored by tracking the transmission coefficient S 21 as a sensing parameter. The variation tendency in S 21 by the glucose concentration is analyzed with equivalent circuit model. In addition, to eradicate the systematic error due to temperature variation, the sensor is tested in two temperature conditions: the constant temperature condition and the time-dependent varying temperature condition. For the varying temperature condition, the temperature correction function was derived between the temperature and the variation in S 21 for DI water. By applying the fitting function to glucose solution, the subsidiary results due to temperature can be completely eliminated. As a result, the S 21 varies by 0.03 dB as the glucose concentration increases from 0 mg/dL to 400 mg/dL.

5.
IEEE Trans Biomed Circuits Syst ; 10(2): 319-27, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25706824

ABSTRACT

This paper presents a vital sign detection sensor based on reflection coefficient variance from an antenna used in wireless communication devices. The near-field effect is estimated by performing 3D full-wave simulations using a dipole antenna and the magnitude variation of the reflection coefficient induced by human thorax movement due to heart and lungs is observed. The results support the possibility of vital sign detection based on the magnitude variation of the reflection coefficient from an antenna, which can be explained as a narrowband modulation scheme. In particular, a sensitivity enhancement method is proposed and analyzed, and experiments are carried out for heartbeat detection using a dipole antenna with the proposed system. Experimental results are compared between the direct detection and sensitivity enhancement detection schemes. FM signal is also applied to confirm that the proposed sensor works properly in conjunction with an existing communication system. The proposed cardiopulmonary detection sensor is implemented with off-the-shelf components at 2.4 GHz and excellent performance is obtained.


Subject(s)
Biosensing Techniques/instrumentation , Heart Rate , Respiratory Rate , Wireless Technology/instrumentation , Electric Impedance , Equipment Design , Humans , Vital Signs
6.
IEEE Trans Biomed Circuits Syst ; 10(2): 300-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25966481

ABSTRACT

This paper presents the development of a non-contact, nonintrusive wrist pulse sensor based on the near-field variation of an array resonator. A compact resonator and its array were designed and fabricated on flexible substrate. The reflection coefficient of the resonator can vary as a function of the distance between the resonator and the walls of the major arteries, and the corresponding variation is utilized to obtain heart rate information at the wrist. To detect very weak pulse signals from the main arteries, a sensitivity enhancement technique was devised using a radio frequency (RF) array resonator. The sensor system was implemented with an RF switch to combine or select appropriate signals from the resonator element and was tested using the 2.4 GHz ISM band. The results demonstrated the sensor system's excellent performance in both sequential and simultaneous detection schemes. The measurement results showed that a heartbeat pulse can be detected from both radial and ulnar arteries via the array resonators. Considering the high sensitivity and characteristics, the proposed detection system can be utilized as a wearable, long-term health monitoring device.


Subject(s)
Biosensing Techniques/instrumentation , Heart Rate Determination/instrumentation , Wrist/physiology , Equipment Design , Humans , Radial Artery/physiology , Radio Waves , Ulnar Artery/physiology
7.
IEEE Trans Biomed Circuits Syst ; 8(4): 584-93, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24235311

ABSTRACT

In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedback element of the VCO as well as a near-field receiving antenna. The frequency deviation of the VCO related to the body proximity effect ranges from 0.07 MHz/mm to 1.8 MHz/mm (6.8 mV/mm to 205 mV/mm in sensitivity) up to a distance of 50 mm, while the amount of VCO drift is about 21 MHz in the condition of 60 (°)C temperature range and discrete component tolerance of ± 5%. Total frequency variation occurs in the capture range of the PLL which is 60 MHz. Thus, its loop control voltage converts the amount of frequency deviation into a difference of direct current (DC) voltage, which is utilized to extract vital signs regardless of the ambient temperature. The experimental results reveal that the proposed sensor placed 50 mm away from a subject can reliably detect respiration and heartbeat signals without the ambiguity of harmonic signals caused by respiration signal at an operating frequency of 2.4 GHz.


Subject(s)
Breath Tests/instrumentation , Equipment Design , Heart Rate/physiology , Humans , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...