Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Leukemia ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942785

ABSTRACT

RNA constitutes a large fraction of chromatin. Spatial distribution and functional relevance of most of RNA-chromatin interactions remain unknown. We established a landscape analysis of RNA-chromatin interactions in human acute myeloid leukemia (AML). In total more than 50 million interactions were captured in an AML cell line. Protein-coding mRNAs and long non-coding RNAs exhibited a substantial number of interactions with chromatin in cis suggesting transcriptional activity. In contrast, small nucleolar RNAs (snoRNAs) and small nuclear RNAs (snRNAs) associated with chromatin predominantly in trans suggesting chromatin specific functions. Of note, snoRNA-chromatin interaction was associated with chromatin modifications and occurred independently of the classical snoRNA-RNP complex. Two C/D box snoRNAs, namely SNORD118 and SNORD3A, displayed high frequency of trans-association with chromatin. The transcription of SNORD118 and SNORD3A was increased upon leukemia transformation and enriched in leukemia stem cells, but decreased during myeloid differentiation. Suppression of SNORD118 and SNORD3A impaired leukemia cell proliferation and colony forming capacity in AML cell lines and primary patient samples. Notably, this effect was leukemia specific with less impact on healthy CD34+ hematopoietic stem and progenitor cells. These findings highlight the functional importance of chromatin-associated RNAs overall and in particular of SNORD118 and SNORD3A in maintaining leukemia propagation.

3.
Blood ; 141(14): 1737-1754, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36577137

ABSTRACT

HOXA9 is commonly upregulated in acute myeloid leukemia (AML), in which it confers a poor prognosis. Characterizing the protein interactome of endogenous HOXA9 in human AML, we identified a chromatin complex of HOXA9 with the nuclear matrix attachment protein SAFB. SAFB perturbation phenocopied HOXA9 knockout to decrease AML proliferation, increase differentiation and apoptosis in vitro, and prolong survival in vivo. Integrated genomic, transcriptomic, and proteomic analyses further demonstrated that the HOXA9-SAFB (H9SB)-chromatin complex associates with nucleosome remodeling and histone deacetylase (NuRD) and HP1γ to repress the expression of factors associated with differentiation and apoptosis, including NOTCH1, CEBPδ, S100A8, and CDKN1A. Chemical or genetic perturbation of NuRD and HP1γ-associated catalytic activity also triggered differentiation, apoptosis, and the induction of these tumor-suppressive genes. Importantly, this mechanism is operative in other HOXA9-dependent AML genotypes. This mechanistic insight demonstrates the active HOXA9-dependent differentiation block as a potent mechanism of disease maintenance in AML that may be amenable to therapeutic intervention by targeting the H9SB interface and/or NuRD and HP1γ activity.


Subject(s)
Leukemia, Myeloid, Acute , Matrix Attachment Region Binding Proteins , Humans , Proteomics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Leukemia, Myeloid, Acute/drug therapy , Transcription Factors/genetics , Nuclear Matrix-Associated Proteins , Chromatin , Receptors, Estrogen/genetics , Receptors, Estrogen/therapeutic use , Matrix Attachment Region Binding Proteins/genetics
4.
Cancer Discov ; 13(2): 332-347, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36259929

ABSTRACT

The development and regulation of malignant self-renewal remain unresolved issues. Here, we provide biochemical, genetic, and functional evidence that dynamics in ribosomal RNA (rRNA) 2'-O-methylation regulate leukemia stem cell (LSC) activity in vivo. A comprehensive analysis of the rRNA 2'-O-methylation landscape of 94 patients with acute myeloid leukemia (AML) revealed dynamic 2'-O-methylation specifically at exterior sites of ribosomes. The rRNA 2'-O-methylation pattern is closely associated with AML development stage and LSC gene expression signature. Forced expression of the 2'-O-methyltransferase fibrillarin (FBL) induced an AML stem cell phenotype and enabled engraftment of non-LSC leukemia cells in NSG mice. Enhanced 2'-O-methylation redirected the ribosome translation program toward amino acid transporter mRNAs enriched in optimal codons and subsequently increased intracellular amino acid levels. Methylation at the single site 18S-guanosine 1447 was instrumental for LSC activity. Collectively, our work demonstrates that dynamic 2'-O-methylation at specific sites on rRNAs shifts translational preferences and controls AML LSC self-renewal. SIGNIFICANCE: We establish the complete rRNA 2'-O-methylation landscape in human AML. Plasticity of rRNA 2'-O-methylation shifts protein translation toward an LSC phenotype. This dynamic process constitutes a novel concept of how cancers reprogram cell fate and function. This article is highlighted in the In This Issue feature, p. 247.


Subject(s)
Leukemia, Myeloid, Acute , RNA, Ribosomal , Humans , Animals , Mice , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Leukemia, Myeloid, Acute/pathology , Ribosomes/genetics , Ribosomes/metabolism , Methylation , Phenotype , Neoplastic Stem Cells/metabolism
5.
STAR Protoc ; 3(4): 101770, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36242770

ABSTRACT

Recurrent gene mutations often cooperate in a predefined stepwise and synergistic manner to alter global transcription, through directly or indirectly remodeling epigenetic landscape on linear and three-dimensional (3D) scales. Here, we present a multiomics data integration approach to investigate the impact of gene mutational synergy on transcription, chromatin states, and 3D chromatin organization in a murine leukemia model. This protocol provides an executable framework to study epigenetic remodeling induced by cooperating gene mutations and to identify the critical regulatory network involved. For complete details on the use and execution of this protocol, please refer to Yun et al. (2021).


Subject(s)
Chromatin Assembly and Disassembly , Multiomics , Animals , Mice , Chromatin , Mutation
7.
Nat Genet ; 53(10): 1443-1455, 2021 10.
Article in English | MEDLINE | ID: mdl-34556857

ABSTRACT

Altered transcription is a cardinal feature of acute myeloid leukemia (AML); however, exactly how mutations synergize to remodel the epigenetic landscape and rewire three-dimensional DNA topology is unknown. Here, we apply an integrated genomic approach to a murine allelic series that models the two most common mutations in AML: Flt3-ITD and Npm1c. We then deconvolute the contribution of each mutation to alterations of the epigenetic landscape and genome organization, and infer how mutations synergize in the induction of AML. Our studies demonstrate that Flt3-ITD signals to chromatin to alter the epigenetic environment and synergizes with mutations in Npm1c to alter gene expression and drive leukemia induction. These analyses also allow the identification of long-range cis-regulatory circuits, including a previously unknown superenhancer of Hoxa locus, as well as larger and more detailed gene-regulatory networks, driven by transcription factors including PU.1 and IRF8, whose importance we demonstrate through perturbation of network members.


Subject(s)
Chromatin Assembly and Disassembly/genetics , DNA, Neoplasm/chemistry , Gene Expression Regulation, Leukemic , Histones/metabolism , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Protein Processing, Post-Translational , Animals , Base Sequence , Disease Models, Animal , Enhancer Elements, Genetic/genetics , Gene Regulatory Networks , Genetic Loci , Humans , Mice, Inbred C57BL , Nuclear Proteins/metabolism , Nucleophosmin , Principal Component Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic , fms-Like Tyrosine Kinase 3/metabolism
8.
Blood ; 134(24): 2195-2208, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31515253

ABSTRACT

Cohesin complex disruption alters gene expression, and cohesin mutations are common in myeloid neoplasia, suggesting a critical role in hematopoiesis. Here, we explore cohesin dynamics and regulation of hematopoietic stem cell homeostasis and differentiation. Cohesin binding increases at active regulatory elements only during erythroid differentiation. Prior binding of the repressive Ets transcription factor Etv6 predicts cohesin binding at these elements and Etv6 interacts with cohesin at chromatin. Depletion of cohesin severely impairs erythroid differentiation, particularly at Etv6-prebound loci, but augments self-renewal programs. Together with corroborative findings in acute myeloid leukemia and myelodysplastic syndrome patient samples, these data suggest cohesin-mediated alleviation of Etv6 repression is required for dynamic expression at critical erythroid genes during differentiation and how this may be perturbed in myeloid malignancies.


Subject(s)
Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation, Leukemic , Mutation , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Biomarkers, Tumor , Cell Line, Tumor , Female , Gene Dosage , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Histones/metabolism , Humans , Male , Myeloproliferative Disorders/diagnosis , Neoplasm Grading , Protein Binding , Proto-Oncogene Proteins c-ets/metabolism , Regulatory Sequences, Nucleic Acid , Repressor Proteins/metabolism , Cohesins , ETS Translocation Variant 6 Protein
9.
J Exp Med ; 216(4): 966-981, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30890554

ABSTRACT

Epigenetic regulators, such as EZH2, are frequently mutated in cancer, and loss-of-function EZH2 mutations are common in myeloid malignancies. We have examined the importance of cellular context for Ezh2 loss during the evolution of acute myeloid leukemia (AML), where we observed stage-specific and diametrically opposite functions for Ezh2 at the early and late stages of disease. During disease maintenance, WT Ezh2 exerts an oncogenic function that may be therapeutically targeted. In contrast, Ezh2 acts as a tumor suppressor during AML induction. Transcriptional analysis explains this apparent paradox, demonstrating that loss of Ezh2 derepresses different expression programs during disease induction and maintenance. During disease induction, Ezh2 loss derepresses a subset of bivalent promoters that resolve toward gene activation, inducing a feto-oncogenic program that includes genes such as Plag1, whose overexpression phenocopies Ezh2 loss to accelerate AML induction in mouse models. Our data highlight the importance of cellular context and disease phase for the function of Ezh2 and its potential therapeutic implications.


Subject(s)
Disease Progression , Enhancer of Zeste Homolog 2 Protein/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Loss of Function Mutation , Animals , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Cell Line, Tumor , Cohort Studies , Disease Models, Animal , Gene Frequency , Histones/metabolism , Humans , Leukemia, Myeloid, Acute/blood , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL , Prognosis , Survival Rate , Transduction, Genetic , Transplantation, Homologous
10.
Nat Genet ; 50(6): 883-894, 2018 06.
Article in English | MEDLINE | ID: mdl-29736013

ABSTRACT

The histone H3 Lys27-specific demethylase UTX (or KDM6A) is targeted by loss-of-function mutations in multiple cancers. Here, we demonstrate that UTX suppresses myeloid leukemogenesis through noncatalytic functions, a property shared with its catalytically inactive Y-chromosome paralog, UTY (or KDM6C). In keeping with this, we demonstrate concomitant loss/mutation of KDM6A (UTX) and UTY in multiple human cancers. Mechanistically, global genomic profiling showed only minor changes in H3K27me3 but significant and bidirectional alterations in H3K27ac and chromatin accessibility; a predominant loss of H3K4me1 modifications; alterations in ETS and GATA-factor binding; and altered gene expression after Utx loss. By integrating proteomic and genomic analyses, we link these changes to UTX regulation of ATP-dependent chromatin remodeling, coordination of the COMPASS complex and enhanced pioneering activity of ETS factors during evolution to AML. Collectively, our findings identify a dual role for UTX in suppressing acute myeloid leukemia via repression of oncogenic ETS and upregulation of tumor-suppressive GATA programs.


Subject(s)
Chromatin/genetics , Enhancer Elements, Genetic , GATA Transcription Factors/genetics , Histone Demethylases/genetics , Leukemia, Myeloid/genetics , Proto-Oncogene Proteins c-ets/genetics , Animals , Cell Line , Chromatin Assembly and Disassembly/genetics , Gene Expression Regulation, Leukemic , HEK293 Cells , Histones/genetics , Humans , Mice , Mice, Inbred C57BL , Proteomics/methods , Regulatory Sequences, Nucleic Acid/genetics , Transcriptional Activation
11.
Blood ; 131(15): 1639-1653, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29463564

ABSTRACT

FLT3 internal tandem duplication (FLT3ITD) mutations are common in acute myeloid leukemia (AML) associated with poor patient prognosis. Although new-generation FLT3 tyrosine kinase inhibitors (TKI) have shown promising results, the outcome of FLT3ITD AML patients remains poor and demands the identification of novel, specific, and validated therapeutic targets for this highly aggressive AML subtype. Utilizing an unbiased genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screen, we identify GLS, the first enzyme in glutamine metabolism, as synthetically lethal with FLT3-TKI treatment. Using complementary metabolomic and gene-expression analysis, we demonstrate that glutamine metabolism, through its ability to support both mitochondrial function and cellular redox metabolism, becomes a metabolic dependency of FLT3ITD AML, specifically unmasked by FLT3-TKI treatment. We extend these findings to AML subtypes driven by other tyrosine kinase (TK) activating mutations and validate the role of GLS as a clinically actionable therapeutic target in both primary AML and in vivo models. Our work highlights the role of metabolic adaptations as a resistance mechanism to several TKI and suggests glutaminolysis as a therapeutically targetable vulnerability when combined with specific TKI in FLT3ITD and other TK activating mutation-driven leukemias.


Subject(s)
Glutamine/metabolism , Leukemia, Myeloid, Acute , Mutation , Protein Kinase Inhibitors/pharmacology , fms-Like Tyrosine Kinase 3 , CRISPR-Cas Systems , Enzyme Activation/drug effects , Enzyme Activation/genetics , Genome-Wide Association Study , Glutamine/genetics , Humans , K562 Cells , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , THP-1 Cells , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
12.
Semin Cancer Biol ; 51: 170-179, 2018 08.
Article in English | MEDLINE | ID: mdl-28778402

ABSTRACT

Epigenetic regulators are the largest group of genes mutated in MDS patients. Most mutated genes belong to one of three groups of genes with normal functions in DNA methylation, in H3K27 methylation/acetylation or in H3K4 methylation. Mutations in the majority of epigenetic regulators disrupt their normal function and induce a loss-of-function phenotype. The transcriptional consequences are often failure to repress differentiation programs and upregulation of self-renewal pathways. However, the mechanisms how different epigenetic regulators result in similar transcriptional consequences are not well understood. Hypomethylating agents are active in higher risk MDS patients, but their efficacy does not correlate with mutations in epigenetic regulators and the median duration of hematologic response is limited to 10-13 months. Inhibitors of histone deacetylases (HDAC) yielded disappointing results so far, questioning this approach in MDS patients. We review the clinical relevance of epigenetic mutations in MDS, discuss their functional consequences and highlight the role of epigenetic therapies in this difficult to treat disease.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Myelodysplastic Syndromes/genetics , Animals , Humans , Myelodysplastic Syndromes/pathology
13.
Nat Cell Biol ; 19(9): 1093-1104, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28825697

ABSTRACT

Loss-of-function mutations of cyclic-AMP response element binding protein, binding protein (CREBBP) are prevalent in lymphoid malignancies. However, the tumour suppressor functions of CREBBP remain unclear. We demonstrate that loss of Crebbp in murine haematopoietic stem and progenitor cells (HSPCs) leads to increased development of B-cell lymphomas. This is preceded by accumulation of hyperproliferative lymphoid progenitors with a defective DNA damage response (DDR) due to a failure to acetylate p53. We identify a premalignant lymphoma stem cell population with decreased H3K27ac, which undergoes transcriptional and genetic evolution due to the altered DDR, resulting in lymphomagenesis. Importantly, when Crebbp is lost later in lymphopoiesis, cellular abnormalities are lost and tumour generation is attenuated. We also document that CREBBP mutations may occur in HSPCs from patients with CREBBP-mutated lymphoma. These data suggest that earlier loss of Crebbp is advantageous for lymphoid transformation and inform the cellular origins and subsequent evolution of lymphoid malignancies.


Subject(s)
CREB-Binding Protein/deficiency , CREB-Binding Protein/metabolism , Cell Transformation, Neoplastic/metabolism , Lymphoid Progenitor Cells/metabolism , Lymphoma/metabolism , Neoplastic Stem Cells/metabolism , Acetylation , Animals , CREB-Binding Protein/genetics , Cell Proliferation , Cell Self Renewal , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Cells, Cultured , DNA Damage , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Histones/metabolism , Lymphangiogenesis , Lymphoid Progenitor Cells/pathology , Lymphoma/genetics , Lymphoma/pathology , Lymphopoiesis , Methylation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Neoplastic Stem Cells/pathology , Phenotype , Signal Transduction , Time Factors , Transcription, Genetic , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
15.
Nature ; 537(7621): 544-547, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27580029

ABSTRACT

Mutations of the tricarboxylic acid cycle enzyme fumarate hydratase cause hereditary leiomyomatosis and renal cell cancer. Fumarate hydratase-deficient renal cancers are highly aggressive and metastasize even when small, leading to a very poor clinical outcome. Fumarate, a small molecule metabolite that accumulates in fumarate hydratase-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite. Fumarate has been shown to inhibit α-ketoglutarate-dependent dioxygenases that are involved in DNA and histone demethylation. However, the link between fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show that loss of fumarate hydratase and the subsequent accumulation of fumarate in mouse and human cells elicits an epithelial-to-mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, invasion, and metastasis. We demonstrate that fumarate inhibits Tet-mediated demethylation of a regulatory region of the antimetastatic miRNA cluster mir-200ba429, leading to the expression of EMT-related transcription factors and enhanced migratory properties. These epigenetic and phenotypic changes are recapitulated by the incubation of fumarate hydratase-proficient cells with cell-permeable fumarate. Loss of fumarate hydratase is associated with suppression of miR-200 and the EMT signature in renal cancer and is associated with poor clinical outcome. These results imply that loss of fumarate hydratase and fumarate accumulation contribute to the aggressive features of fumarate hydratase-deficient tumours.


Subject(s)
Epigenesis, Genetic , Epithelial-Mesenchymal Transition , Fumarates/metabolism , Animals , Cell Movement , Cells, Cultured , Fumarate Hydratase/deficiency , Fumarate Hydratase/genetics , Fumarate Hydratase/metabolism , HEK293 Cells , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mesoderm/metabolism , Mice , MicroRNAs/genetics , Transcription Factors/metabolism , Transcriptome
17.
Haematologica ; 99(9): 1456-64, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24895338

ABSTRACT

Hypomethylating agents are widely used in patients with myelodysplastic syndromes and unfit patients with acute myeloid leukemia. However, it is not well understood why only some patients respond to hypomethylating agents. We found previously that the effect of decitabine on hematopoietic stem cell viability differed between Mll5 wild-type and null cells. We, therefore, investigated the role of MLL5 expression levels on outcome of acute myeloid leukemia patients who were treated with decitabine. MLL5 above the median expression level predicted longer overall survival independent of DNMT3A mutation status in bivariate analysis (median overall survival for high vs. low MLL5 expression 292 vs. 167 days; P=0.026). In patients who received three or more courses decitabine, high MLL5 expression and wild-type DNMT3A independently predicted improved overall survival (median overall survival for high vs. low MLL5 expression 468 vs. 243 days; P=0.012). In transformed murine cells, loss of Mll5 was associated with resistance to low-dose decitabine, less global DNA methylation in promoter regions, and reduced DNA demethylation upon decitabine treatment. Together, these data support our clinical observation of improved outcome in decitabine-treated patients who express MLL5 at high levels, and suggest a mechanistic role of MLL5 in the regulation of DNA methylation.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Azacitidine/analogs & derivatives , DNA-Binding Proteins/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , RNA, Messenger/genetics , Aged , Aged, 80 and over , Animals , Azacitidine/therapeutic use , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cells, Cultured , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/drug effects , DNA Methyltransferase 3A , DNA-Binding Proteins/metabolism , Decitabine , Drug Administration Schedule , Female , Gene Expression , Humans , Leukemia, Myeloid, Acute/pathology , Male , Mice , Middle Aged , Promoter Regions, Genetic , RNA, Messenger/metabolism , Survival Analysis
18.
Blood ; 122(16): 2877-87, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-23954893

ABSTRACT

Mutations in the metabolic enzymes isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) are frequently found in glioma, acute myeloid leukemia (AML), melanoma, thyroid cancer, and chondrosarcoma patients. Mutant IDH produces 2-hydroxyglutarate (2HG), which induces histone- and DNA-hypermethylation through inhibition of epigenetic regulators. We investigated the role of mutant IDH1 using the mouse transplantation assay. Mutant IDH1 alone did not transform hematopoietic cells during 5 months of observation. However, mutant IDH1 greatly accelerated onset of myeloproliferative disease-like myeloid leukemia in mice in cooperation with HoxA9 with a mean latency of 83 days compared with cells expressing HoxA9 and wild-type IDH1 or a control vector (167 and 210 days, respectively, P = .001). Mutant IDH1 accelerated cell-cycle transition through repression of cyclin-dependent kinase inhibitors Cdkn2a and Cdkn2b, and activated mitogen-activated protein kinase signaling. By computational screening, we identified an inhibitor of mutant IDH1, which inhibited mutant IDH1 cells and lowered 2HG levels in vitro, and efficiently blocked colony formation of AML cells from IDH1-mutated patients but not of normal CD34(+) bone marrow cells. These data demonstrate that mutant IDH1 has oncogenic activity in vivo and suggest that it is a promising therapeutic target in human AML cells.


Subject(s)
Gene Expression Regulation, Leukemic , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation , Adolescent , Adult , Animals , Antigens, CD34/metabolism , Apoptosis , Bone Marrow Transplantation , Cell Cycle , Female , Humans , Isocitrate Dehydrogenase/antagonists & inhibitors , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Middle Aged , Young Adult
19.
Br J Haematol ; 158(2): 208-215, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22568493

ABSTRACT

In acute myeloid leukaemia with normal karyotype (CN-AML), gene mutations (e.g. NPM1, FLT3, CEBPA) as well as deregulated gene expression affect outcome. High expression of ID1 was described as a negative prognostic factor. We have shown that CEBPA regulates ID1 expression. Therefore, we analysed the prognostic impact of ID1 expression in 269 patients (aged 16-60 years) with CN-AML in the context of other molecular markers, particularly CEBPA mutations. ID1(high) status was an independent negative prognostic factor for overall survival (OS) in multivariate analysis when analysed together with age, extramedullary disease, platelets, expression of BAALC and WT1, FLT3-internal tandem duplication, NPM1, WT1 single nucleotide polymorphism rs16754 and IDH1. ID1 expression was higher in CEBPA wildtype patients than in patients with monoallelic CEBPA mutations and these patients showed higher ID1 expression compared to patients with biallelic CEBPA mutations. Thus, when CEBPA mutations were considered, ID1 expression lost its prognostic impact. Likewise, the negative impact of ID1(high) status on relapse-free survival (RFS) was lost when CEBPA mutations were included in the analysis. In CEBPA wildtype patients, ID1 expression had no impact on complete remission-rate, OS or RFS. In conclusion, CEBPA mutations seem to deregulate ID1 expression. Therefore, ID1 expression is not an independent prognostic factor in CN-AML.


Subject(s)
Biomarkers, Tumor/metabolism , Inhibitor of Differentiation Protein 1/metabolism , Leukemia, Myeloid, Acute/metabolism , Adolescent , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , CCAAT-Enhancer-Binding Proteins/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Inhibitor of Differentiation Protein 1/genetics , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Male , Middle Aged , Mutation , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nucleophosmin , Prognosis , RNA, Messenger/genetics , RNA, Neoplasm/genetics , Remission Induction , Risk Factors , Survival Analysis , Treatment Outcome , Young Adult
20.
Ann Hematol ; 91(8): 1221-33, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22488406

ABSTRACT

Overexpression of MN1, ERG, BAALC, and EVI1 (MEBE) genes in cytogenetically normal acute myeloid leukemia (AML) patients is associated with poor prognosis, but their prognostic effect in patients with myelodysplastic syndromes (MDS) has not been studied systematically. Expression data of the four genes from 140 MDS patients were combined in an additive score, which was validated in an independent patient cohort of 110 MDS patients. A high MEBE score, defined as high expression of at least two of the four genes, predicted a significantly shorter overall survival (OS) (HR 2.29, 95 % CI 1.3-4.09, P= .005) and time to AML progression (HR 4.83, 95 % CI 2.01-11.57, P< .001) compared to a low MEBE score in multivariate analysis independent of karyotype, percentage of bone marrow blasts, transfusion dependence, ASXL1, and IDH1 mutation status. In a validation cohort of 110 MDS patients, a high MEBE score predicted shorter OS (HR 1.77; 95 % CI 1.04-3.0, P= .034) and time to AML progression (HR 3.0, 95 % CI 1.17-7.65, P= .022). A high MEBE expression score is an unfavorable prognostic marker in MDS and is associated with an increased risk for progression to AML. Expression of the MEBE genes is regulated by FLI1 and c-MYC, which are potential upstream targets of the MEBE signature.


Subject(s)
DNA-Binding Proteins/genetics , Myelodysplastic Syndromes/diagnosis , Neoplasm Proteins/genetics , Proto-Oncogenes/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Adult , Aged , Aged, 80 and over , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cohort Studies , DNA-Binding Proteins/metabolism , Disease Progression , Female , Gene Expression , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , MDS1 and EVI1 Complex Locus Protein , Male , Middle Aged , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/mortality , Neoplasm Proteins/metabolism , Predictive Value of Tests , Preleukemia/diagnosis , Preleukemia/genetics , Preleukemia/metabolism , Prognosis , Trans-Activators/metabolism , Transcription Factors/metabolism , Transcriptional Regulator ERG , Tumor Suppressor Proteins/metabolism , Validation Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...