Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 13: 845619, 2022.
Article in English | MEDLINE | ID: mdl-35368674

ABSTRACT

Species within the Genus Catalpa are mostly semievergreen or deciduous trees with opposite or whorled leaves. C. bungei, C. fargesii f. duclouxii and C. fargesii are sources of traditional precious wood in China, known as the "kings of wood". Due to a lack of phenotypic and molecular studies and insufficient sequence information, intraspecific morphological differences, common DNA barcodes and partial sequence fragments cannot clearly reveal the phylogenetic or intraspecific relationships within Catalpa. Therefore, we sequenced the complete chloroplast genomes of six taxa of the genus Catalpa and analyzed their basic structure and evolutionary relationships. The chloroplast genome of Catalpa shows a typical tetrad structure with a total length ranging from 157,765 bp (C. fargesii) to 158,355 bp (C. ovata). The length of the large single-copy (LSC) region ranges from 84,599 bp (C. fargesii) to 85,004 bp (C. ovata), that of the small single-copy (SSC) region ranges from 12,662 bp (C. fargesii) to 12,675 bp (C. ovata), and that of the inverted repeat (IR) regions ranges from 30,252 bp (C. fargesii) to 30,338 bp (C. ovata). The GC content of the six chloroplast genomes were 38.1%. In total, 113 unique genes were detected, and there were 19 genes in IR regions. The 113 genes included 79 protein-coding genes, 30 tRNA genes and four rRNA genes. Five hypervariable regions (trnH-psbA, rps2-rpoC2, rpl22, ycf15-trnl-CAA and rps15) were identified by analyzing chloroplast nucleotide polymorphisms, which might be serve as potential DNA barcodes for the species. Comparative analysis showed that single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs) were highly diverse in the six species. Codon usage patterns were highly similar among the taxa included in the present study. In addition to the stop codons, all codons showed a preference for ending in A or T. Phylogenetic analysis of the entire chloroplast genome showed that all taxa within the genus Catalpa formed a monophyletic group, clearly reflecting the relationships within the genus. This study provides information on the chloroplast genome sequence, structural variation, codon bias and phylogeny of Catalpa, which will facilitate future research efforts.

2.
Front Plant Sci ; 12: 704262, 2021.
Article in English | MEDLINE | ID: mdl-34868103

ABSTRACT

Lignin is a complex polymer in plant cell walls whose proportion is second only to that of cellulose and plays an important role in the mechanical properties of wood and stress resistance of plants. Here, we induced tension wood (TW) formation in Catalpa bungei by artificial bending and analyzed the lignin metabolism of the TW. LC-MS analysis showed that a significantly higher content of coniferyl aldehyde was observed in the TW cell wall than in the opposite wood (OW) and normal wood (NW) cell walls. TW had significantly lower contents of coniferyl alcohol than OW and NW. Raman spectroscopy results indicated that TW had lower total lignin than OW and NW. The transcription and translation levels of most of the differentially expressed genes (DEGs) involved in lignin monomer biosynthesis indicated upregulation in TW/OW and TW/NW. We found no significant difference in the transcription levels of three collision gases (CADs) between TW and OW or between NW, but their translation levels were significantly downregulated in TW, suggesting post-transcriptional control for CAD. We predicted and analyzed transcription factors that could target DEGs involved in lignin monomer biosynthesis in TW. Based on the analysis of the relationships of targeting and coexpression, we found that NAC (evm.model.group1.695) could potentially target 4CLs and CCoAOMT, that HD-Zip (evm.model.group7.1157) had potential targeting relationships with CCoAOMT, F5H, and CCR, and that their expression levels were significantly positive. It is speculated that the upregulation of NAC and HD-ZIP transcription factors activates the expression of downstream target genes, which leads to a significant increase in coniferyl aldehyde in TW. However, the decrease in total lignin in TW may be caused by the significant downregulation of CAD translation and the significant decrease in precursors (coniferyl alcohol). Whether the expression of CAD genes is regulated by post-transcriptional control and affects TW lignin metabolism needs further study.

SELECTION OF CITATIONS
SEARCH DETAIL
...