Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 66(11): 2677-2684, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29444566

ABSTRACT

Oryza sativa L. is consumed globally as a staple food, and its roots have been used as a Korean and Chinese medical supplement for protection of the stomach and lungs and for amelioration of vomiting and fever. In our continuing search for biologically effective metabolites from Korean natural materials, we found that an EtOH extract of O. sativa root reciprocally regulated adipocyte and osteoblast differentiation. Chemical analysis of the EtOH extract using a bioassay-guided fractionation protocol led to the isolation and determination of two novel lignans, oryzativols A and B, responsible for these regulatory activities. Using 1D and 2D nuclear magnetic resonance spectroscopic analyses, high-resolution mass spectrometry, and circular dichroism analysis, the structures of the novel compounds were elucidated. We examined their effects on the regulation of mesenchymal stem cell differentiation. Treatment with oryzativol A in the human mesenchymal cell line C3H10T1/2 suppressed gene expression of peroxisome proliferator activated receptor γ, which resulted in a reduction in adipogenesis. Oryzativol A also enhanced the expression of Runx2 and cellular differentiation into osteoblasts in the same mesenchymal stem cell line.


Subject(s)
Adipocytes/drug effects , Adipogenesis/drug effects , Biological Products/pharmacology , Oryza/chemistry , Osteoblasts/drug effects , Osteogenesis/drug effects , Plant Extracts/pharmacology , Adipocytes/cytology , Adipocytes/metabolism , Animals , Biological Products/chemistry , Biological Products/isolation & purification , Cell Line , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Osteoblasts/cytology , Osteoblasts/metabolism , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Roots/chemistry
2.
Mycobiology ; 37(1): 62-6, 2009 Mar.
Article in English | MEDLINE | ID: mdl-23983509

ABSTRACT

The internal stipe necrosis of cultivated mushrooms (Agaricus bisporus) is caused by the bacterium Ewingella americana, a species of the Enterobacteriaceae. Recently, Ewingella americana was isolated from cultivated white button mushrooms in Korea evidencing symptoms of internal stipe browning. Its symptoms are visible only at harvest, and appear as a variable browning reaction in the center of the stipes. From these lesions, we isolated one bacterial strain (designated CH4). Inoculation of the bacterial isolate into mushroom sporocarps yielded the characteristic browning symptoms that were distinguishable from those of the bacterial soft rot that is well known to mushroom growers. The results of Gram stain, flagellal staining, and biochemical tests identified these isolates as E. americana. This was verified by pathogenicity, physiological and biochemical characteristics, and the results of an analysis of the 16S rRNA gene sequences and the fatty acids profile. This is the first report of the isolation of E. americana from cultivated white button mushrooms in Korea.

SELECTION OF CITATIONS
SEARCH DETAIL
...