Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 261
Filter
1.
Ecotoxicol Environ Saf ; 279: 116453, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38772139

ABSTRACT

Chlorinated polyfluorinated ether sulfonate, commercially known as F-53B, has been associated with adverse birth outcomes. However, the reproductive toxicology of F-53B on the placenta remains poorly understood. To address this gap, we examined the impact of F-53B on placental injury and its underlying molecular mechanisms in vivo. Pregnant C57BL/6 J female mice were randomly allocated to three groups: the control group, F-53B 0.8 µg/kg/day group, and F-53B 8 µg/kg/day group. After F-53B exposure through free drinking water from gestational day (GD) 0.5-14.5, the F-53B 8 µg/kg/day group exhibited significant increases in placental weights and distinctive histopathological alterations, including inflammatory cell infiltration, heightened syncytiotrophoblast knots, and a loosened trophoblastic basement membrane. Within the F-53B 8 µg/kg/day group, placental tissue exhibited increased apoptosis, as indicated by increased caspase3 activation. Furthermore, F-53B potentially induced the NF-κB signaling pathway activation through IκB-α phosphorylation. Subsequently, this activation upregulated the expression of inflammatory cytokines and components of the NLRP3 inflammasome, including activated caspase1, IL-1ß, IL-18, and cleaved gasdermin D (GSDMD), ultimately leading to pyroptosis in the mouse placenta. Our findings reveal a pronounced inflammatory injury in the placenta due to F-53B exposure, suggesting potential reproductive toxicity at concentrations relevant to the human population. Further toxicological and epidemiological investigations are warranted to conclusively assess the reproductive health risks posed by F-53B.


Subject(s)
Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Placenta , Animals , Female , Pregnancy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Placenta/drug effects , Placenta/pathology , Mice , Inflammasomes/drug effects , Inflammation/chemically induced , Inflammation/pathology , Apoptosis/drug effects , NF-kappa B/metabolism , Fluorocarbons/toxicity , Signal Transduction/drug effects
2.
Sci Total Environ ; 932: 173117, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734097

ABSTRACT

2,2',6-Tribromobisphenol A (Tri-BBPA), the main debrominated congener of tetrabromobisphenol A (TBBPA), is ubiquitous in the environment and human body but with unknown toxicity. Tri-BBPA was synthesized and applied to investigate its sub-chronic exposure effects on 28 organ coefficients and clinical health indicators related to liver function, kidney function, and cardiovascular system function in female mice. Results showed that the liver was the targeted organ of Tri-BBPA exposure. Compared to the control group, the changes in liver coefficient, cholinesterase, total protein, albumin, γ-glutamyl transpeptidase, lactate dehydrogenase, and creatine kinase levels ranged from -61.2 % to 35.5 % in the high-exposed group. Creatine kinase was identified as a critical effect indicator of Tri-BBPA exposure. Using the Bayesian benchmark dose derivation method, a lower reference dose than TBBPA was established for Tri-BBPA (10.6 µg/kg-day). Serum metabolomics revealed that Tri-BBPA exposure may primarily damage the liver by disrupting tryptophan metabolism related to L-alanine, tryptamine, 5-hydroxyindoleacetic acid, and 5-methoxyindoleacetate in liver cells and leading to liver dysfunction. Notably, epilepsy, schizophrenia, early preeclampsia, and late-onset preeclampsia were the top six enriched diseases, suggesting that the nervous system may be particularly affected by Tri-BBPA exposure. Our findings hinted a non-negligible health risk of exposure to debrominated products of TBBPA.


Subject(s)
Polybrominated Biphenyls , Animals , Mice , Female , Polybrominated Biphenyls/toxicity , Metabolic Networks and Pathways/drug effects , Liver/metabolism , Liver/drug effects , Environmental Pollutants/toxicity
3.
Ecotoxicol Environ Saf ; 278: 116400, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718725

ABSTRACT

Evidence increasingly suggests molybdenum exposure at environmental levels is still associated with adverse human health, emphasizing the necessity to establish a more protective reference dose (RfD). Herein, we conducted a study measuring 15 urinary metals and 30 clinical health indicators in 2267 participants residing near chemical enterprises across 11 Chinese provinces to investigate their relationships. The kidney and cystatin-C emerged as the most sensitive organ and critical effect indicator of molybdenum exposure, respectively. Odds of cystatin-C-defined chronic kidney disease (CKD) in the highest quantile of molybdenum exposure significantly increased by 133.5% (odds ratio [OR]: 2.34, 95% CI: 1.78, 3.11) and 75.8% (OR: 1.76, 95% CI: 1.24, 2.49) before and after adjusting for urinary 14 metals, respectively. Intriguingly, cystatin-C significantly mediated 15.9-89.5% of molybdenum's impacts on liver and lung function, suggesting nephrotoxicity from molybdenum exposure may trigger hepatotoxicity and pulmonary toxicity. We derived a new RfD for molybdenum exposure (0.87 µg/kg-day) based on cystatin-C-defined estimated glomerular filtration rate by employing Bayesian Benchmark Dose modeling analysis. This RfD is significantly lower than current exposure guidance values (5-30 µg/kg-day). Remarkably, >90% of participants exceeded the new RfD, underscoring the significant health impacts of environmental molybdenum exposure on populations in industrial regions of China.


Subject(s)
Molybdenum , Molybdenum/urine , Molybdenum/toxicity , Molybdenum/analysis , Humans , China/epidemiology , Female , Male , Adult , Middle Aged , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Cystatin C , Risk Assessment , Environmental Pollutants/urine , Environmental Pollutants/analysis , Young Adult , Bayes Theorem , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/chemically induced , Aged , Chemical Industry , Kidney/drug effects , Glomerular Filtration Rate/drug effects
4.
J Hazard Mater ; 469: 133549, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38447362

ABSTRACT

Particle size is a critical influencing factor in assessing human exposure risk as fine particles are generally more hazardous than larger coarse particles. However, how particle composition influences human health risk is only poorly understood as different studies have different utilised different definitions and as a consequence there is no consensus. Here, with a new methodology taking insights of each size fraction load (%GSFload), metal bioaccessibility, we classify which specific particle size can reliably estimate the human exposure risk of lead and other metals. We then validate these by correlating the metals in each size fraction with those in human blood, hair, crop grain and different anthropogenic sources. Although increasing health risks are linked to metal concentration these increase as particle size decrease, the adjusted-risk for each size fraction differs when %GSFload is introduced to the risk assessment program. When using a single size fraction (250-50 µm, 50-5 µm, 5-1 µm, and < 1 µm) for comparison, the risk may be either over- or under-estimated. However, by considering bulk and adjusting the risk, it would be possible to obtain results that are closer to the real scenarios, which have been validated through human responses and evidence from crops. Fine particle size fractions (< 5 µm) bearing the mineral crystalline or aggregates (CaCO3, Fe3O4, Fe2O3, CaHPO4, Pb5(PO4)3Cl) alter the accumulation, chemical speciation, and fate of metals in soil/dust/sediment from the different sources. Loaded lead in the size fraction of < 50 µm has a significantly higher positive association with the risk-receptor biomarkers (BLLs, Hair Pb, Corn Pb, and Crop Pb) than other size fractions (bulk and 50-250 µm). Thus, we conclude that the < 50 µm fraction would be likely to be recommended as a reliable fraction to include in a risk assessment program. This methodology acts as a valuable instrument for future research undertakings, highlighting the importance of choosing suitable size fractions and attaining improved accuracy in risk assessment results that can be effectively compared.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Lead , Metals, Heavy/analysis , Particle Size , Soil/chemistry , Dust/analysis , Risk Assessment , Soil Pollutants/analysis , Environmental Monitoring
5.
Environ Sci Technol ; 58(13): 5739-5749, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38456395

ABSTRACT

Epidemiological studies have demonstrated the embryonic and developmental toxicity of plasticizers. Thus, understanding the in utero biotransformation and accumulation of plasticizers is essential to assessing their fate and potential toxicity in early life. In the present study, 311 infant hair samples and 271 paired meconium samples were collected at birth in Guangzhou, China, to characterize fetal exposure to legacy and emerging plasticizers and their metabolites. Results showed that most of the target plasticizers were detected in infant hair, with medians of 9.30, 27.6, and 0.145 ng/g for phthalate esters (PAEs), organic phosphate ester (OPEs), and alternative plasticizers (APs), and 1.44, 0.313, and 0.066 ng/g for the metabolites of PAEs, OPEs, and APs, respectively. Positive correlations between plasticizers and their corresponding primary metabolites, as well as correlations among the oxidative metabolites of bis(2-ethylhexyl) phthalate (DEHP) and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), were observed, indicating that infant hair retained the major phase-I metabolism of the target plasticizers. While no positive correlations were found in parent compounds or their primary metabolites between paired infant hair and meconium, significant positive correlations were observed among secondary oxidative metabolites of DEHP and DINCH in hair and meconium, suggesting that the primary metabolites in meconium come from hydrolysis of plasticizers in the fetus but most of the oxidative metabolites come from maternal-fetal transmission. The parent compound/metabolite ratios in infant hair showed a decreasing trend across pregnancy, suggesting in utero accumulation and deposition of plasticizers. To the best of our knowledge, this study is the first to report in utero exposure to both parent compounds and metabolites of plasticizers by using paired infant hair and meconium as noninvasive biomonitoring matrices and provides novel insights into the fetal biotransformation and accumulation of plasticizers across pregnancy.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Humans , Pregnancy , Infant, Newborn , Female , Plasticizers , Meconium/metabolism , Diethylhexyl Phthalate/metabolism , Diethylhexyl Phthalate/toxicity , Phthalic Acids/metabolism , Hair/metabolism , Organophosphates , Biotransformation , Esters/metabolism , Environmental Exposure/analysis
6.
Thorax ; 79(7): 615-623, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38388490

ABSTRACT

BACKGROUND: There is growing interest in the joint effects of hazardous trace elements (HTEs) on lung function deficits, but the data are limited. This is a critical research gap given increased global industrialisation. METHODS: A national cross-sectional study including spirometry was performed among 2112 adults across 11 provinces in China between 2020 and 2021. A total of 27 HTEs were quantified from urine samples. Generalised linear models and quantile-based g-computation were used to explore the individual and joint effects of urinary HTEs on lung function, respectively. RESULTS: Overall, there were negative associations between forced expiratory volume in 1 s (FEV1) and urinary arsenic (As) (z-score coefficient, -0.150; 95% CI, -0.262 to -0.038 per 1 ln-unit increase), barium (Ba) (-0.148, 95% CI: -0.258 to -0.039), cadmium (Cd) (-0.132, 95% CI: -0.236 to -0.028), thallium (Tl) (-0.137, 95% CI: -0.257 to -0.018), strontium (Sr) (-0.147, 95% CI: -0.273 to -0.022) and lead (Pb) (-0.121, 95% CI: -0.219 to -0.023). Similar results were observed for forced vital capacity (FVC) with urinary As, Ba and Pb and FEV1/FVC with titanium (Ti), As, Sr, Cd, Tl and Pb. We found borderline associations between the ln-quartile of joint HTEs and decreased FEV1 (-20 mL, 95% CI: -48 to +8) and FVC (-14 mL, 95% CI: -49 to+2). Ba and Ti were assigned the largest negative weights for FEV1 and FVC within the model, respectively. CONCLUSION: Our study investigating a wide range of HTEs in a highly polluted setting suggests that higher urinary HTE concentrations are associated with lower lung function, especially for emerging Ti and Ba, which need to be monitored or regulated to improve lung health.


Subject(s)
Environmental Exposure , Trace Elements , Humans , Cross-Sectional Studies , Male , Female , Middle Aged , Environmental Exposure/adverse effects , Environmental Exposure/analysis , China/epidemiology , Trace Elements/urine , Adult , Forced Expiratory Volume , Spirometry , Vital Capacity , Lung/physiopathology , Aged
7.
Phys Rev Lett ; 132(5): 056101, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38364152

ABSTRACT

The slow transition from an out-of-equilibrium glass towards a supercooled liquid is a complex relaxation phenomenon. In this Letter, we study the correlation between mechanical relaxation and equilibration kinetics in a Pd_{20}Pt_{20}Cu_{20}Ni_{20}P_{20} high-entropy metallic glass. The evolution of stress relaxation with aging time was obtained with an unprecedented detail, allowing us to pinpoint new interesting features. The long structural relaxation towards equilibrium contains a wide distribution of activation energies, instead of being just associated to the ß relaxation as commonly accepted. The stress relaxation time can be correlated with the equilibration rate and we observe a decrease of microstructural heterogeneity which contrasts with an increase of dynamic heterogeneity. These results significantly enhance our insight of the interplay between relaxation dynamics and thermodynamics in metallic glasses.

8.
Sci Adv ; 10(3): eadf8666, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241376

ABSTRACT

Fiber-optic distributed acoustic sensing (DAS) has proven to be a revolutionary technology for the detection of seismic and acoustic waves with ultralarge scale and ultrahigh sensitivity, and is widely used in oil/gas industry and intrusion monitoring. Nowadays, the single-frequency laser source in DAS becomes one of the bottlenecks limiting its advance. Here, we report a dual-comb-based coherently parallel DAS concept, enabling linear superposition of sensing signals scaling with the comb-line number to result in unprecedented sensitivity enhancement, straightforward fading suppression, and high-power Brillouin-free transmission that can extend the detection distance considerably. Leveraging 10-line comb pairs, a world-class detection limit of 560 fε/√Hz@1 kHz with 5 m spatial resolution is achieved. Such a combination of dual-comb metrology and DAS technology may open an era of extremely sensitive DAS at the fε/√Hz level, leading to the creation of next-generation distributed geophones and sonars.

9.
J Phys Chem Lett ; 15(3): 811-816, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38232179

ABSTRACT

Establishing a robust quantitative correlation between thermodynamics and dynamics in amorphous matter remains a significant challenge in condensed matter physics. Although the classical Adam-Gibbs relationship represents a pivotal step in this direction and the correlation between relaxation time and configurational entropy has been partially verified in simple liquids, this quantitative link has yet to be tested in realistic glass-forming systems where complex many-body interactions are present. Here we conduct free energy samplings and lattice dynamics analysis to distinguish vibrational entropy from configurational entropy in a realistic Cu-Zr model of a metallic glass. Our calculations unveil a power-law relationship (with a substantial exponent of ∼3) between the logarithmic relaxation time and configurational entropy, surpassing the linear prediction of the original Adam-Gibbs relationship. This nonlinear entropy driven relaxation time variation likely originates from anisotropic nature of atomic many-body interactions, suggesting that factors beyond thermodynamics contribute to the glass transition phenomenon.

10.
Environ Pollut ; 345: 123460, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38290655

ABSTRACT

Despite the increasing production, use, and ubiquitous occurrence of novel brominated flame retardants (NBFRs), little information is available regarding their fate in aquatic organisms. In this study, the bioaccumulation and biotransformation of two typical NBFRs, i.e., 1,2-bis (2,4,6-tribromophenoxyethane) (BTBPE) and 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH), were investigated in tissues of zebrafish (Danio rerio) being administrated a dose of target chemicals through their diet. Linear accumulation was observed for both BTBPE and TBECH in the muscle, liver, gonads, and brain of zebrafish, and the elimination of BTBPE and TBECH in all tissues followed pseudo-first-order kinetics, with the fastest depuration rate occurring in the liver. BTBPE and TBECH showed low bioaccumulation potential in zebrafish, with biomagnification factors (BMFs) < 1 in all tissues. Individual tissues' function and lipid content are vital factors affecting the distribution of BTBPE and TBECH. Stereoselective accumulation of TBECH enantiomers was observed in zebrafish tissues, with first-eluting enantiomers, i.e. E1-α-TBECH and E1-ß-TBECH, preferentially accumulated. Additionally, the transformation products (TPs) in the zebrafish liver were comprehensively screened and identified using high-resolution mass spectrometry. Twelve TPs of BTBPE and eight TPs of TBECH were identified: biotransformation pathways involving ether cleavage, debromination, hydroxylation, and methoxylation reactions for BTBPE and hydroxylation, debromination, and oxidation processes for TBECH. Biotransformation is also a vital factor affecting the bioaccumulation potential of these two NBFRs, and the environmental impacts of NBFR TPs should be further investigated in future studies. The findings of this study provide a scientific basis for an accurate assessment of the ecological and environmental risks of BTBPE and TBECH.


Subject(s)
Flame Retardants , Zebrafish , Animals , Zebrafish/metabolism , Bioaccumulation , Stereoisomerism , Biotransformation , Cyclohexanes/metabolism , Flame Retardants/analysis
11.
J Hazard Mater ; 465: 133183, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38070267

ABSTRACT

Tetrabromobisphenol A (TBBPA) and tetrabromobisphenol S (TBBPS) are widely distributed brominated flame retardants. While TBBPA has been demonstrated to stimulate adipogenesis, TBBPS is also under suspicion for potentially inducing comparable effects. In this study, we conducted a non-targeted metabolomics to examine the metabolic changes in 3T3-L1 cells exposed to an environmentally relevant dose of TBBPA or TBBPS. Our findings revealed that 0.1 µM of both TBBPA and TBBPS promoted the adipogenesis of 3T3-L1 preadipocytes. Multivariate analysis showed significant increases in glycerophospholipids, sphingolipids, and steroids relative levels in 3T3-L1 cells exposed to TBBPA or TBBPS at the final stage of preadipocyte differentiation. Metabolites set composed of glycerophospholipids was found to be highly effective predictors of adipogenesis in 3T3-L1 cells exposed to TBBPA or TBBPS (revealed from the receiver operating characteristic curve with an area under curve > 0.90). The results from metabolite set enrichment analysis suggested both TBBPA and TBBPS exposures significantly perturbed steroid biosynthesis in adipocytes. Moreover, TBBPS additionally disrupted the sphingolipid metabolism in the adipocytes. Our study presents new insights into the obesogenic effects of TBBPS and provides valuable information about the metabolites associated with adipogenesis induced by TBBPA or TBBPS.


Subject(s)
Adipogenesis , Lipid Metabolism , Polybrominated Biphenyls , Animals , Mice , 3T3-L1 Cells , Cell Differentiation , Glycerophospholipids/pharmacology
12.
Sci Total Environ ; 912: 169125, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38070564

ABSTRACT

Sixty-eight paired samples of urban surface dust and soil as well as four samples of atmospheric dustfall were collected from the arid city of Urumqi in Northwest China. Thirteen organophosphate esters (OPEs) in these samples were analyzed for the characteristics, sources, bio-accessibility, and health risks of OPEs. The studied OPEs were widely detected in the urban surface dust, soil, and dustfall, with Σ13OPEs (total concentration of 13 OPEs) of 1362, 164.0, and 1367 ng/g, respectively, dominated by tris(2-chloroethyle) phosphate (TCEP), tri(2-chloroisopropyl) phosphate (TCiPP), tri(1, 3-dichloroisopropyl) phosphate (TDCiPP) and tris(2-butoxyethyl) phosphate (TBOEP), TBOEP and tri(2-ethylhexyl) phosphate (TEHP), and TCEP, TCiPP, TBOEP, triphenyl phosphate and TEHP, respectively. The low and high frequency magnetic susceptibility of surface dust and urban soil might indicate the pollution of OPEs in them. Elevated levels of the Σ13OPEs in the surface dust and urban soil were found in the west, south, and northeast of Urumqi city. The total deposition flux of dustfall-bound 13 OPEs ranged from 86.5 to 143 ng/m2/day, with a mean of 105 ng/m2/day. OPEs in the surface dust and urban soil were associated with the emissions of indoor and outdoor products containing OPEs, the dry and wet deposition of atmosphere, and the emissions of traffic. Trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tri-isobutyl phosphate, TCEP, TCiPP, TDCiPP, and TBOEP in surface dust and urban soil had relatively high bio-accessibility. The bio-accessibility of OPEs was mainly affected by the physio-chemical properties of OPEs. The non-cancer and cancer risks of human exposure to OPEs in surface dust and urban soil were relatively low or negligible. The current research results may provide scientific supports for prevention and control of pollution and risks of OPEs.


Subject(s)
Dust , Flame Retardants , Phosphines , Humans , Dust/analysis , Environmental Monitoring/methods , Soil , Esters/analysis , Flame Retardants/analysis , Organophosphates/analysis , China , Phosphates
13.
Chinese Journal of School Health ; (12): 138-141, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1011409

ABSTRACT

Objective@#To analyze the relationship between the risk of tuberculosis outbreaks in schools and the visit interval of index cases, so as to provide a scientific reference for predicting the risks of tuberculosis outbreak and making preventive measures.@*Methods@#A total of 630 index cases from school tuberculosis outbreaks were studied during January, 2015 to December, 2022. Data on demographics, consultation history, etiological diagnosis, and methods of detection were collected. Restricted Cubic Splines (RCS), unconditional Logistic regression, and the receiver operating characteristic curve (ROC curve) were used for analysis.@*Results@#The RCS fitted curve showed that the risk of a tuberculosis outbreak linearly increased when the consultation interval for etiologically negative patients exceeded 5.79 days, or for etiologically positive patients exceeded 8.37 days. After multi factor adjustment, for every additional day in the visit interval of the index case, the odds ratio ( OR ) value for a high risk outbreak was 1.10 (95% CI =1.07-1.13)( P <0.05). When analyzed by tertiles of visit intervals, compared to an interval of <14 days, the OR values (95% CI ) for high risk outbreaks in schools with intervals of 14-<28 days and ≥28 days were 10.32(3.04-35.10) and 82.58( 28.42 -239.95), respectively( P <0.01), indicating a trend of increasing outbreak risk with longer visit intervals. Based on the ROC curve analysis, the optimal threshold for predicting a high risk school tuberculosis outbreak was 23.5 days, with an area under the curve ( AUC ) of 0.93 (95% CI =0.89-0.98).@*Conclusion@#An extended visit interval of index cases is a good early warning indicator for high risk tuberculosis outbreaks in schools and could be considered a key factor in early intervention and risk control strategies.

14.
Light Sci Appl ; 12(1): 292, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38052775

ABSTRACT

Biomarker detection is key to identifying health risks. However, designing sensitive and single-use biosensors for early diagnosis remains a major challenge. Here, we report submonolayer lasers on optical fibers as ultrasensitive and disposable biosensors. Telecom optical fibers serve as distributed optical microcavities with high Q-factor, great repeatability, and ultralow cost, which enables whispering-gallery laser emission to detect biomarkers. It is found that the sensing performance strongly depends on the number of gain molecules. The submonolayer lasers obtained a six-order-of-magnitude improvement in the lower limit of detection (LOD) when compared to saturated monolayer lasers. We further achieve an ultrasensitive immunoassay for a Parkinson's disease biomarker, alpha-synuclein (α-syn), with a lower LOD of 0.32 pM in serum, which is three orders of magnitude lower than the α-syn concentration in the serum of Parkinson's disease patients. Our demonstration of submonolayer biolaser offers great potentials in high-throughput clinical diagnosis with ultimate sensitivity.

15.
Huan Jing Ke Xue ; 44(12): 6529-6540, 2023 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-38098381

ABSTRACT

Brown carbon (BrC) refers to a group of organic compounds in fine atmospheric particles (PM2.5) that are able to absorb light in the ultraviolet and visible range. They have a significant impact on the visibility of air and on the earth's climate. In this study, we used a black carbon analyzer (Model AE33) to conduct field measurements in northern suburban Nanjing from March 2021 to February 2022. We measured the light absorption coefficients of BrC in PM2.5 and quantified the contributions of primary (BrCpri) and secondary brown carbon (BrCsec) in BrC by using the minimum correlation method (MRS), combined with the backward trajectories,potential source contribution function (PSCF) analysis, and diurnal patterns to analyze the seasonal characteristics of BrC. The results showed that the annual average light absorption of BrC was(7.76±7.17)Mm-1 (at 370 nm), and its contribution to the total aerosol light absorption was (22.0±8.8)%. BrC light absorption at different wavelengths all showed a U-shape seasonal variation of high in spring and winter and low in summer and fall. MRS analysis showed that the annual average contributions of BrCpri and BrCsec were (62.9±21.4)% and (37.1±21.4)% (at 370 nm), respectively; however, the contribution of BrCsec increased with the increase in wavelength, and it became dominant in longer wavelengths such as 660 nm. Backward trajectory and PSCF analysis showed that BrC was heavily influenced by air masses from the sea in spring, summer, and fall but was influenced greatly by local and regional continental emissions in winter. Traffic emissions in spring, summer, and fall were more intense to contribute to BrCpri than that in winter, whereas coal and biomass combustion had a greater impact on BrCpri in winter. Detailed analysis revealed that gas-phase photochemistry and aqueous chemistry had different influences on BrCsec formation in different seasons. It was mainly from gas-phase photochemistry in summer but was dominated by aqueous process in winter; both processes, however, were important pathways to BrCsec in spring and fall.

16.
Sci Total Environ ; 905: 166964, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37699486

ABSTRACT

Liquid crystal monomers (LCMs) are potentially persistent, bioaccumulating, and toxic substances. However, limited data are available on the occurrence of LCMs in indoor and outdoor air particle matter (PM10) in residential areas. Herein, residential areas near an e-waste dismantling center (Guiyu Town, Shantou City), as well as areas away from the e-waste site (Jiedong District, Jieyang City) were selected as the sampling areas. PM10 was collected from the indoor environments of Guiyu (IGY) and Jieyang (IJY), as well as those from the outdoor environments (OGY and OJY) using the high-volume air samplers (TH-10000C). The levels of 57 LCMs in PM10 were analyzed, and the highest concentrations of LCMs were found in IGY (0.970-1080 pg/m3), followed by IJY (2.853-455 pg/m3), OGY (0.544-116 pg/m3) and OJY (0.258-35.8 pg/m3). No significant difference was observed for LCM levels in indoor PM10 between the two areas (p > 0.05), which were significantly higher than those in outdoors (p < 0.05), indicating that the release of electronic products in general indoor environments is a source of LCMs that cannot be ignored. The compositions of LCMs in outdoors were not consistent with those of indoors. The correlation analysis of individual LCMs suggested potential different sources to the LCMs in indoor and outdoor environments. The median daily intake values of Σ46LCMs via inhalation were estimated as 0.440, 1.46 × 10-2, 0.170 and 1.19 × 10-2 ng/kg BW/day for adults, and as 2.27, 2.60 × 10-2, 0.880 and 2.10 × 10-2 ng/kg BW/day for toddlers, respectively, indicating much higher exposure doses of LCMs indoors compared with the outdoors, and much higher doses for toddlers compared with adults (p < 0.05). These results reveal the potentially adverse effects of LCMs on vulnerable populations, such as toddlers, in indoor environments.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Liquid Crystals , Adult , Humans , Air Pollutants/analysis , Environmental Monitoring , Air Pollution, Indoor/analysis , Cities , Particulate Matter/analysis , Particle Size
17.
Article in English | MEDLINE | ID: mdl-37725852

ABSTRACT

Humans are widely and concurrently exposed to volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). However, few studies have reported the internal co-exposure levels of these chemicals in occupational and general populations. Specifically, the associations revealed between the urinary levels of metabolites of VOCs (mVOCs), hydroxylated PAHs (OH-PAHs), and oxidative stress biomarkers for humans remain limited. In this study, a method based on solid-phase extraction (SPE) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was developed for the simultaneous analysis of 22 mVOCs, 12 OH-PAHs, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in human urine samples. The method was validated with all target analyte accuracies and precisions in the range of 76 %-120 % and 1 %-14 % at three levels of spiked urine samples, respectively. The limit of detection (LOD) and limit of quantification (LOQ) of the target analytes were 0.01-0.34 ng/mL and 0.01-7.57 ng/mL, respectively. And the method was applied to measure urinary levels of target analytes from 38 petrochemical workers in Guangzhou, South China. Except for 3-hydroxy-benzo[a]pyrene, all target analytes were detected in the urine samples. The average levels were 0.05-12.6 ng/mL for individual OH-PAHs, 0.20-73620 ng/mL for individual mVOCs, and 1.00 ng/mL for 8-OHdG. Additionally, 3-hydroxy-phenanthrene, 1-hydroxy-pyrene, 6-hydroxy-chrysene, N-acetyl-S-(trichlorovinyl)-L-cysteine, 2-methylhippuric acid, thiodiacetic acid, trans, trans-Muconic acid, and N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine had statistically significant positive effects on 8-OHdG levels, while 1-hydroxy-naphthalene, 1,2-dihydroxybenzene, and hippuric acid showed a negative effect on 8-OHdG, indicating these metabolites could lead to synergistic or antagonistic oxidative DNA damage. This study provides a robust analytical method that permits a comprehensive assessment of co-exposure to PAHs and VOCs and their potential adverse health effects.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Volatile Organic Compounds , Humans , 8-Hydroxy-2'-Deoxyguanosine , Polycyclic Aromatic Hydrocarbons/analysis , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid , Chromatography, Liquid/methods , Cysteine , Biomarkers/urine
18.
Front Pharmacol ; 14: 1150861, 2023.
Article in English | MEDLINE | ID: mdl-37538178

ABSTRACT

Breast cancer is the most prevalent malignancy among women. Doxorubicin (Dox) resistance was one of the major obstacles to improving the clinical outcome of breast cancer patients. The purpose of this study was to investigate the relationship between the FABP signaling pathway and Dox resistance in breast cancer. The resistance property of MCF-7/ADR cells was evaluated employing CCK-8, Western blot (WB), and confocal microscopy techniques. The glycolipid metabolic properties of MCF-7 and MCF-7/ADR cells were identified using transmission electron microscopy, PAS, and Oil Red O staining. FABP5 and CaMKII expression levels were assessed through GEO and WB approaches. The intracellular calcium level was determined by flow cytometry. Clinical breast cancer patient's tumor tissues were evaluated by immunohistochemistry to determine FABP5 and p-CaMKII protein expression. In the presence or absence of FABP5 siRNA or the FABP5-specific inhibitor SBFI-26, Dox resistance was investigated utilizing CCK-8, WB, and colony formation methods, and intracellular calcium level was examined. The binding ability of Dox was explored by molecular docking analysis. The results indicated that the MCF-7/ADR cells we employed were Dox-resistant MCF-7 cells. FABP5 expression was considerably elevated in MCF-7/ADR cells compared to parent MCF-7 cells. FABP5 and p-CaMKII expression were increased in resistant patients than in sensitive individuals. Inhibition of the protein expression of FABP5 by siRNA or inhibitor increased Dox sensitivity in MCF-7/ADR cells and lowered intracellular calcium, PPARγ, and autophagy. Molecular docking results showed that FABP5 binds more powerfully to Dox than the known drug resistance-associated protein P-GP. In summary, the PPARγ and CaMKII axis mediated by FABP5 plays a crucial role in breast cancer chemoresistance. FABP5 is a potentially targetable protein and therapeutic biomarker for the treatment of Dox resistance in breast cancer.

19.
Environ Pollut ; 334: 122138, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37453686

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have attracted worldwide attention as one of persistent organic pollutants; however, there is limited knowledge about the exposure concentrations of PFAS-contained ambient particulate matter and the related health risks. This study investigated the abundance and distribution of 32 PFAS in fine particulate matter (PM2.5) collected from 93 primary or secondary schools across the Pearl River Delta region (PRD), China. These chemicals comprise four PFAS categories which includes perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic acids (PFSAs), perfluoroalkyl acid (PFAA) precursors and PFAS alternatives. In general, concentrations of target PFAS ranged from 11.52 to 419.72 pg/m3 (median: 57.29 pg/m3) across sites. By categories, concentrations of PFSAs (median: 26.05 pg/m3) were the dominant PFAS categories, followed by PFCAs (14.25 pg/m3), PFAS alternatives (2.75 pg/m3) and PFAA precursors (1.10 pg/m3). By individual PFAS, PFOS and PFOA were the dominant PFAS, which average concentration were 24.18 pg/m3 and 6.05 pg/m3, respectively. Seasonal variation showed that the concentrations of PFCAs and PFSAs were higher in winter than in summer, whereas opposite seasonal trends were observed in PFAA precursors and PFAS alternatives. Estimated daily intake (EDI) and hazard quotient (HQ) were used to assess human inhalation-based exposure risks to PFAS. Although the health risks of PFAS via inhalation were insignificant (HQ far less than one), sufficient attention should be levied to ascertain the human exposure risks through inhalation, given that exposure to PFAS through air inhalation is a long term and cumulative process.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Humans , Particulate Matter , Environmental Monitoring , Fluorocarbons/analysis , Sulfonic Acids , China , Carboxylic Acids/analysis , Alkanesulfonic Acids/analysis , Water Pollutants, Chemical/analysis
20.
RSC Adv ; 13(28): 19455-19463, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37383692

ABSTRACT

A rapid pressurized capillary electrochromatography (pCEC) method has been established for the simultaneous analysis of 11 phenols in the four main original plants of the famous traditional Chinese medicine (TCM) Shihu. The effects of wavelength, mobile phase, flow rate, pH value, concentration of buffer, and applied voltage were systematically studied. The investigated 11 phenols could be isolated in 35 min on a reversed-phase EP-100-20/45-3-C18 capillary column using the established method. To apply the established pCEC method, all phenols except tristin (11) were detected in the four Dendrobium plants. A total of 10 components were detected in D. huoshanense, 6 components in D. nobile, 3 components in D. chrysotoxum, and 4 components in D. fimbriatum. The consistent evaluation revealed that the similarities among the four original plants of Shihu were 38.2-86.0% based on the 11 polyphenols and 92.5-97.7% based on the pCEC fingerprints. These further suggested that the components of the four original plants of TCM Shihu might be significantly different. Further investigation should be conducted to confirm and evaluate if the four species could be used as the same medicine with the same amount according to Chinese Pharmacopoeia (ChP).

SELECTION OF CITATIONS
SEARCH DETAIL
...