Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 16(5): 4893-6, 2016 May.
Article in English | MEDLINE | ID: mdl-27483841

ABSTRACT

Synthetic diamond-like carbon (DLC) is a carbon-based material used mainly in cutting tool coatings and as an abrasive material. The market for DLC has expanded into electronics, optics, and acoustics because of its distinct electrical and optical properties. In this work, n-doped DLC (N:DLC) films were deposited on p-type silicon substrates using an unbalanced magnetron sputtering (UBMS) method. We investigated the effect of the working pressure on the microstructure and electrical properties of n-doped DLC films. The structural properties of N:DLC films were investigated by Raman spectroscopy and SEM-EDX, and the electrical properties of films were investigated by observing the changes in the resistivity and current-voltage (I-V) properties. The N:DLC films prepared by UBMS in this study demonstrated good conducting and physical properties with n-doping.

2.
J Nanosci Nanotechnol ; 14(12): 9268-71, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25971049

ABSTRACT

Titania (TiO2) powder, which is material for photoelectrode in dye-sensitized solar cells (DSSCs), was fabricated by hydrothermal synthesis process at 230 degrees C for 12 hours. The crystal structures of all the synthesized nano-structured TiO2 films exhibited anatase phase. Binder-free pastes were prepared with the change of the amount of ammonia water from 2 µl to 640 µl in order to obtain the printable viscosity. It has been known that weak inter-particle bonds in slurry of flocculated particles make the slurry more viscous than slurry of dispersed particles. The increase of the amount of ammonia water for binder-free TiO2 pastes is attributed to the improvement of the viscosity of TiO2 paste and the power conversion efficiency of DSSCs using it. The viscosity of TiO2 pastes prepared at the ammonia water of 418 µl exhibited the highest value about 109,000 cP and also, was very transparent over 84%. As a result, the power conversion efficiency of DSSC prepared with the ammonia water of 418 µl was about 3%.

SELECTION OF CITATIONS
SEARCH DETAIL
...