Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Allergy Clin Immunol ; 147(5): 1764-1777, 2021 05.
Article in English | MEDLINE | ID: mdl-33516870

ABSTRACT

BACKGROUND: Natural killer T (NKT) cells are unconventional T cells that bridge innate and adaptive immunity. NKT cells have been implicated in the development of atopic dermatitis (AD). OBJECTIVE: We aimed to investigate the role of NKT cells in AD development, especially in skin. METHODS: Global proteomic and transcriptomic analyses were performed by using skin and blood from human healthy-controls and patients with AD. Levels of CXCR4 and CXCL12 expression in skin NKT cells were analyzed in human AD and mouse AD models. By using parabiosis and intravital imaging, the role of skin CXCR4+ NKT cells was further evaluated in models of mice with AD by using CXCR4-conditionally deficient or CXCL12 transgenic mice. RESULTS: CXCR4 and its cognate ligand CXCL12 were significantly upregulated in the skin of humans with AD by global transcriptomic and proteomic analyses. CXCR4+ NKT cells were enriched in AD skin, and their levels were consistently elevated in our models of mice with AD. Allergen-induced NKT cells participate in cutaneous allergic inflammation. Similar to tissue-resident memory T cells, the predominant skin NKT cells were CXCR4+ and CD69+. Skin-resident NKT cells uniquely expressed CXCR4, unlike NKT cells in the liver, spleen, and lymph nodes. Skin fibroblasts were the main source of CXCL12. CXCR4+ NKT cells preferentially trafficked to CXCL12-rich areas, forming an enriched CXCR4+ tissue-resident NKT cells/CXCL12+ cell cluster that developed in acute and chronic allergic inflammation in our models of mice with AD. CONCLUSIONS: CXCR4+ tissue-resident NKT cells may form a niche that contributes to AD, in which CXCL12 is highly expressed.


Subject(s)
Chemokine CXCL12/immunology , Dermatitis, Atopic/immunology , Natural Killer T-Cells/immunology , Receptors, CXCR4/immunology , Skin/immunology , Animals , Chemokine CXCL12/genetics , Dermatitis, Atopic/genetics , Female , Gene Expression Profiling , Humans , Mice , Proteomics , Receptors, CXCR4/genetics
2.
Cancers (Basel) ; 12(3)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120820

ABSTRACT

Manipulating autophagy is a promising strategy for treating cancer as several autophagy inhibitors are shown to induce autophagic cell death. One of these, autophagonizer (APZ), induces apoptosis-independent cell death by binding an unknown target via an unknown mechanism. To identify APZ targets, we used a label-free drug affinity responsive target stability (DARTS) approach with a liquid chromatography/tandem mass spectrometry (LC-MS/MS) readout. Of 35 protein interactors, we identified Hsp70 as a key target protein of unmodified APZ in autophagy. Either APZ treatment or Hsp70 inhibition attenuates integrity of lysosomes, which leads to autophagic cell death exhibiting an excellent synergism with a clinical drug, temozolomide, in vitro, in vivo, and orthotropic glioma xenograft model. These findings demonstrate the potential of APZ to induce autophagic cell death and its development to combinational chemotherapeutic agent for glioma treatment. Collectively, our study demonstrated that APZ, a new autophagy inhibitor, can be used as a potent antitumor drug candidate to get over unassailable glioma and revealed a novel function of Hsp70 in lysosomal integrity regulation of autophagy.

3.
J Neurochem ; 150(6): 776-786, 2019 09.
Article in English | MEDLINE | ID: mdl-31215654

ABSTRACT

The SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins are core organizers of the postsynaptic density in neuronal excitatory synapses, and their defects cause various neurodevelopmental and neuropsychiatric disorders. Mechanistically, Shank3 directly and indirectly interacts with hundreds of synaptic proteins with diverse functions and potentially exerts its regulatory roles in synaptic development and function via these interactors. However, Shank3-dependent regulation of synaptic abundance has been validated in vivo for only a few Shank3 interactors. Here, using a quantitative proteomic analysis, we identified 136 proteins with altered synaptic abundance in the striatum of Shank3-overexpressing transgenic (TG) mice. By comparing these proteins with those found in a previous analysis of the postsynaptic density of Shank3 knock-out (KO) striatum, we identified and confirmed that cylindromatosis-associated deubiquitinase (Cyld), a deubiquitinase specific for Lys63-linked polyubiquitin chains, was up- and down-regulated in Shank3 TG and KO striatal synapses, respectively. Consistently, we found that the synaptic levels of Lys63-linked polyubiquitin chains were down- and up-regulated in the Shank3 TG and KO striata, respectively. Furthermore, by isolating and analyzing the synaptic Cyld complex, we generated a Cyld interactome consisting of 103 proteins, which may include Cyld substrates. Bioinformatic analyses suggested associations of the Cyld interactome with a few brain disorders and synaptic functions. Taken together, these results suggest that Shank3 regulates the synaptic abundance of Cyld in the mouse striatum and, thereby, potentially modulates the Lys63-linked polyubiquitination of striatal synaptic proteins.


Subject(s)
Corpus Striatum/metabolism , Deubiquitinating Enzyme CYLD/metabolism , Nerve Tissue Proteins/metabolism , Synapses/metabolism , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microfilament Proteins , Polyubiquitin/metabolism , Proteomics , Ubiquitination/physiology
4.
Int J Legal Med ; 133(3): 899-908, 2019 May.
Article in English | MEDLINE | ID: mdl-30864069

ABSTRACT

The assessment of postmortem degradation of skeletal muscle proteins has emerged as a novel approach to estimate the time since death in the early to mid-postmortem phase (approximately 24 h postmortem (hpm) to 120 hpm). Current protein-based methods are limited to a small number of skeletal muscle proteins, shown to undergo proteolysis after death. In this study, we investigated the usability of a target-based and unbiased system-wide protein analysis to gain further insights into systemic postmortem protein alterations and to identify additional markers for postmortem interval (PMI) delimitation. We performed proteomic profiling to globally analyze postmortem alterations of the rat and mouse skeletal muscle proteome at defined time points (0, 24, 48, 72, and 96 hpm), harnessing a mass spectrometry-based quantitative proteomics approach. Hierarchical clustering analysis for a total of 579 (rat) and 896 (mouse) quantified proteins revealed differentially expressed proteins during the investigated postmortem period. We further focused on two selected proteins (eEF1A2 and GAPDH), which were shown to consistently degrade postmortem in both rat and mouse, suggesting conserved intra- and interspecies degradation behavior, and thus preserved association with the PMI and possible transferability to humans. In turn, we validated the usefulness of these new markers by classical Western blot experiments in a rat model and in human autopsy cases. Our results demonstrate the feasibility of mass spectrometry-based analysis to discover novel protein markers for PMI estimation and show that the proteins eEF1A2 and GAPDH appear to be valuable markers for PMI estimation in humans.


Subject(s)
Biomarkers/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Peptide Elongation Factor 1/metabolism , Postmortem Changes , Proteomics , Aged , Animals , Chromatography, Liquid , Cluster Analysis , Female , Forensic Pathology/methods , Humans , Male , Mass Spectrometry , Mice, Inbred ICR , Models, Animal , Rats, Sprague-Dawley
5.
J Proteome Res ; 17(12): 4320-4324, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30113170

ABSTRACT

We performed proteomic analyses of human olfactory epithelial tissue to identify missing proteins using liquid chromatography-tandem mass spectrometry. Using a next-generation proteomic pipeline with a < 1.0% false discovery rate at the peptide and protein levels, we identified 3731 proteins, among which five were missing proteins (P0C7M7, P46721, P59826, Q658L1, and Q8N434). We validated the identified missing proteins using the corresponding synthetic peptides. No olfactory receptor (OR) proteins were detected in olfactory tissue, suggesting that detection of ORs would be very difficult. We also identified 49 and 50 alternative splicing variants mapped at the neXtProt and GENCODE databases, respectively, and 2000 additional single amino acid variants. This data set is available at the ProteomeXchange consortium via PRIDE repository (PXD010025).


Subject(s)
Olfactory Mucosa/chemistry , Proteomics/methods , Alternative Splicing , Amino Acid Sequence , Genetic Variation , Humans , Peptides/analysis
6.
Sci Rep ; 6: 38728, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27929093

ABSTRACT

Many cohort studies have shown that consumption of diets containing a higher composition of foods derived from plants reduces mortality from coronary heart disease (CHD). Here, we examined the active components of a plant-based diet and the underlying mechanisms that reduce the risk of CHD using three rat models and a quantitative proteomics approach. In a short-term myocardial infarction (MI) model, intake of wheat extract (WE), the representative cardioprotectant identified by screening approximately 4,000 samples, reduced myocardial injury by inhibiting apoptosis, enhancing ATP production, and maintaining protein homeostasis. In long-term post-MI models, this myocardial protection resulted in ameliorating adverse left-ventricular remodelling, which is a predictor of heart failure. Among the wheat components, arabinose and xylose were identified as active components responsible for the observed efficacy of WE, which was administered via ingestion and tail-vein injections. Finally, the food components of plant-based diets that contained cell wall polysaccharides rich in arabinose, xylose, and possibly fucose were found to confer protection against myocardial injury. These results show for the first time that specific monosaccharides found in the cell wall polysaccharides in plant-based diets can act as active ingredients that reduce CHD by inhibiting postocclusion steps, including MI and heart failure.


Subject(s)
Cell Wall/metabolism , Diet , Disease Models, Animal , Monosaccharides/metabolism , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/prevention & control , Plant Extracts/administration & dosage , Polysaccharides/metabolism , Triticum/chemistry , Animals , Apoptosis , Male , Myocardial Reperfusion Injury/pathology , Proteomics , Rats , Rats, Sprague-Dawley , Ventricular Remodeling
7.
J Proteome Res ; 15(12): 4146-4164, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27760464

ABSTRACT

Glycoprotein conformations are complex and heterogeneous. Currently, site-specific characterization of glycopeptides is a challenge. We sought to establish an efficient method of N-glycoprotein characterization using mass spectrometry (MS). Using alpha-1-acid glycoprotein (AGP) as a model N-glycoprotein, we identified its tryptic N-glycopeptides and examined the data reproducibility in seven laboratories running different LC-MS/MS platforms. We used three test samples and one blind sample to evaluate instrument performance with entire sample preparation workflow. 165 site-specific N-glycopeptides representative of all N-glycosylation sites were identified from AGP 1 and AGP 2 isoforms. The glycopeptide fragmentations by collision-induced dissociation or higher-energy collisional dissociation (HCD) varied based on the MS analyzer. Orbitrap Elite identified the greatest number of AGP N-glycopeptides, followed by Triple TOF and Q-Exactive Plus. Reproducible generation of oxonium ions, glycan-cleaved glycopeptide fragment ions, and peptide backbone fragment ions was essential for successful identification. Laboratory proficiency affected the number of identified N-glycopeptides. The relative quantities of the 10 major N-glycopeptide isoforms of AGP detected in four laboratories were compared to assess reproducibility. Quantitative analysis showed that the coefficient of variation was <25% for all test samples. Our analytical protocol yielded identification and quantification of site-specific N-glycopeptide isoforms of AGP from control and disease plasma sample.


Subject(s)
Glycopeptides/chemistry , Orosomucoid/chemistry , Protein Isoforms/analysis , Binding Sites , Blood Specimen Collection , Chromatography, Liquid , Glycosylation , Humans , Reproducibility of Results , Tandem Mass Spectrometry
8.
Yonsei Med J ; 57(6): 1435-45, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27593872

ABSTRACT

PURPOSE: Regulatory T (Treg) cells are key modulators in the immune system. Recent studies have shown that atopic dermatitis (AD) patients have higher numbers of Treg cells; however, little is known about the specific phenotype and function of Treg cells in AD. MATERIALS AND METHODS: To identify differentially expressed proteins in peripheral induced Treg cells in AD and naturally derived Treg cells in normal controls, CD4⁺CD25⁺ Treg cells were isolated from thymus tissue of normal mice and the spleens of AD mice. Membrane proteins were extracted, and quantitative proteomics labeling with Tandem Mass Tags (TMT) was performed, followed by one-dimensional liquid chromatography/tandem mass spectrometry analysis. RESULTS: Using TMT labeling, we identified 510 proteins, including 63 membrane proteins and 16 plasma membrane proteins. CD47 was one of the upregulated proteins in Treg cells in AD spleens. Although CD47 was expressed in all CD4⁺ and CD8⁺ T cells, a significantly higher expression of CD47 was observed in the Treg cells of AD mice and AD patients than in those of normal mice and healthy controls. Furthermore, Treg cells from the spleen showed a significantly higher expression of CD47 than those from the thymus. CONCLUSION: We found that CD47 is highly expressed in the Treg cells of AD mice, particularly in the spleen. Based on our results, we propose that CD47(high) Treg cells are likely induced Treg cells and that upregulated CD47 in the Treg cells of AD patients may play a role in the increased population of Treg cells in AD.


Subject(s)
CD47 Antigen/metabolism , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes/immunology , Up-Regulation , Animals , CD4 Antigens/analysis , Dermatitis, Atopic/immunology , Female , Humans , Mice , Severity of Illness Index , Spleen/cytology , Spleen/immunology , T-Lymphocytes/drug effects , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology
9.
Sci Rep ; 6: 21175, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26883985

ABSTRACT

Human glycoproteins exhibit enormous heterogeneity at each N-glycosite, but few studies have attempted to globally characterize the site-specific structural features. We have developed Integrated GlycoProteome Analyzer (I-GPA) including mapping system for complex N-glycoproteomes, which combines methods for tandem mass spectrometry with a database search and algorithmic suite. Using an N-glycopeptide database that we constructed, we created novel scoring algorithms with decoy glycopeptides, where 95 N-glycopeptides from standard α1-acid glycoprotein were identified with 0% false positives, giving the same results as manual validation. Additionally automated label-free quantitation method was first developed that utilizes the combined intensity of top three isotope peaks at three highest MS spectral points. The efficiency of I-GPA was demonstrated by automatically identifying 619 site-specific N-glycopeptides with FDR ≤ 1%, and simultaneously quantifying 598 N-glycopeptides, from human plasma samples that are known to contain highly glycosylated proteins. Thus, I-GPA platform could make a major breakthrough in high-throughput mapping of complex N-glycoproteomes, which can be applied to biomarker discovery and ongoing global human proteome project.


Subject(s)
Glycoproteins/metabolism , Proteomics/methods , Algorithms , Automation, Laboratory , Blood Proteins/metabolism , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/metabolism , Glycopeptides/chemistry , Glycopeptides/metabolism , Glycoproteins/chemistry , Glycosylation , Humans , Liver Neoplasms/blood , Liver Neoplasms/metabolism , Proteome , Proteomics/instrumentation , Reproducibility of Results
11.
J Proteome Res ; 13(3): 1327-35, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24467309

ABSTRACT

Reversible protein phosphorylations of serine, threonine, and tyrosine are critical processes in organisms ranging from prokaryotes to eukaryotes. Water fleas (Daphnids) have been used widely in ecologic and ecotoxicological studies, with more than 80% of ecotoxicological publications over the last 10 years involving planktonic genera, including Daphnia. However, the substrate proteins and the functions of phosphorylation in Daphnia remain largely unknown. Here, we report the first global screening of phosphoproteins and their sites of phosphorylation in D. pulex. We identified 103 phosphorylation sites in 91 Daphnia proteins by phosphopeptide enrichment using titanium dioxide isolation technology and an online two-dimensional liquid chromatography (2D-LC) system supported by high accuracy mass spectrometry. The identified Serine/threonine/tyrosine phosphorylation sites showed enrichment in the unstructured regions. Using Gene Ontology analysis, phosphorylated proteins were identified mainly as membrane proteins with essential biological roles such as protein binding, catalytic activity and nucleotide binding. BLASTP searching identified 21 phosphorylated sites in 20 D. pulex proteins that were evolutionally conserved between D. pulex and human. Here, we report the phosphorylation in Daphnia proteins and the predicted biological and functional roles of these phosphorylations. D. pulex might provide a promising model for examining the role of phosphorylation in biological functions.


Subject(s)
Arthropod Proteins/analysis , Daphnia/metabolism , Phosphoproteins/analysis , Serine/metabolism , Threonine/metabolism , Tyrosine/metabolism , Amino Acid Sequence , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Biological Evolution , Conserved Sequence , Daphnia/genetics , Gene Expression Regulation , Humans , Molecular Sequence Annotation , Molecular Sequence Data , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Proteomics , Titanium/chemistry
12.
J Alzheimers Dis ; 36(2): 321-34, 2013.
Article in English | MEDLINE | ID: mdl-23603400

ABSTRACT

Alzheimer's disease (AD) is characterized by progressive memory loss accompanied by synaptic and neuronal degeneration. Although research has shown that substantial neurodegeneration occurs even during the early stages of AD, the detailed mechanisms of AD pathogenesis are largely unknown because of difficulties in diagnosis and limitations of the analytical methods. The 5XFAD mouse model harbors five early-onset familial AD (FAD) mutations and displays substantial amyloid plaques and neurodegeneration. Here, we use quantitative mass spectrometry to identify proteome-wide changes in the 5XFAD mouse hippocampus during the early stages of AD pathology. A subset of the results was validated with immunoblotting. We found that the 5XFAD mice display higher expression of ApoE, ApoJ (clusterin), and nicastrin, three important proteins in AD that are known to participate in amyloid-ß processing and clearance, as well as the neurological damage/glial marker protein GFAP and other proteins. A large subset of the proteins that were up- or downregulated in 5XFAD brains have been implicated in neurological disorders and cardiovascular disease, suggesting an association between cardiovascular disease and AD. Common upstream regulator analysis of upregulated proteins suggested that the XBP1, NRF2, and p53 transcriptional pathways were activated, as was IGF-1R signaling. Protein interactome analysis revealed an interconnected network of regulated proteins, with two major sub-networks centered on AßPP processing membrane complexes and mitochondrial proteins. Together with a recent study on the transcriptome of 5XFAD mice, our study allows a comprehensive understanding of the molecular events occurring in 5XFAD mice during the early stages of AD pathology.


Subject(s)
Alzheimer Disease/pathology , Gene Expression Regulation/genetics , Hippocampus/metabolism , Proteome/metabolism , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Chromatography, Liquid , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/pathology , Humans , Membrane Glycoproteins/metabolism , Mice , Mutation/genetics , Presenilin-1/genetics , Proteome/genetics , Signal Transduction/genetics , Tandem Mass Spectrometry , Transcription Factors/metabolism
13.
Biochem Biophys Res Commun ; 434(1): 87-94, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23542466

ABSTRACT

Auditory fear conditioning is a well-characterized rodent learning model where a neutral auditory cue is paired with an aversive outcome to induce associative fear memory. The storage of long-term auditory fear memory requires long-term potentiation (LTP) in the lateral amygdala and de novo protein synthesis. Although many studies focused on individual proteins have shown their contribution to LTP and fear conditioning, non-biased genome-wide studies have only recently been possible with microarrays, which nevertheless fall short of measuring changes at the level of proteins. Here we employed quantitative proteomics to examine the expression of hundreds of proteins in the lateral amygdala in response to auditory fear conditioning. We found that various proteins previously implicated in LTP, learning and axon/dendrite growth were regulated by fear conditioning. A substantial number of proteins that were regulated by fear conditioning have not yet been studied specifically in learning or synaptic plasticity.


Subject(s)
Conditioning, Psychological/physiology , Fear/physiology , Proteomics/methods , Acoustic Stimulation , Amygdala/physiology , Animals , Male , Memory, Long-Term/physiology , Nerve Tissue Proteins/physiology , Protein Interaction Maps , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
14.
Electrophoresis ; 33(24): 3756-63, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23161002

ABSTRACT

Microglial cells act as the first and main form of active immune defense in the central nervous system related to inflammation and neurodegenerative disease. Lipopolysaccharide (LPS) induces many genes encoding inflammatory mediators, including cytokines such as tumor necrosis factor-α, interleukin-1ß, (IL-1ß), and IL-6, chemokines, and prostaglandins in microglial cells. Quantitative proteomics methods with isobaric chemical labeling using tandem mass tags and 2D-nano LC-ESI-MS/MS were used to systematically analyze proteomic changes in microglia responding to LPS stimulation. As a result, we found that the expression level of 21 proteins in human microglial cells changed after activation. Among those, one of the strong mitogen-activated protein kinase (MAPK) regulator proteins, CMPK1 was highly upregulated after LPS stimulation in human microglial cells. We detected and validated upregulation of MAPK including ERK1/2, p38, and SAPK/JNK by immunohistochemistry and Western blotting. NFκB, strong transcription factor of CMPK1, was translocated to the nucleus from the cytosol by high contents screening after LPS stimulation. Taken together, we conclude that MAPK signaling plays an important role in LPS-induced human microglial activation related to inflammatory response.


Subject(s)
Lipopolysaccharides/pharmacology , Microglia/drug effects , Microglia/enzymology , Mitogen-Activated Protein Kinases/metabolism , Proteome/drug effects , Amino Acid Sequence , Cell Line , Electrophoresis, Gel, Two-Dimensional , Enzyme Activation/drug effects , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Microglia/cytology , Molecular Sequence Data , NF-kappa B/metabolism , Proteomics/methods , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...