Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 148(11): 114101, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29566533

ABSTRACT

We present an ab initio theory and computational method for Penning ionization widths. Our method is based on the Fano theory of resonances, algebraic diagrammatic construction (ADC) scheme for many-electron systems, and Stieltjes imaging procedure. It includes an extension of the Fano-ADC scheme [V. Averbukh and L. S. Cederbaum, J. Chem. Phys. 123, 204107 (2005)] to triplet excited states. Penning ionization widths of various He*-H2 states are calculated as a function of the distance R between He* and H2. We analyze the asymptotic (large-R) dependences of the Penning widths in the region where the well-established electron transfer mechanism of the decay is suppressed by the multipole- and/or spin-forbidden energy transfer. The R-12 and R-8 power laws are derived for the asymptotes of the Penning widths of the singlet and triplet excited states of He*(1s2s1,3S), respectively. We show that the electron transfer mechanism dominates Penning ionization of He*(1s2s 3S)-H2 up until the He*-H2 separation is large enough for the radiative decay of He* to become the dominant channel. The same mechanism also dominates the ionization of He*(1s2s 1S)-H2 when R < 5 Å. We estimate that the regime of energy transfer in the He*-H2 Penning ionization cannot be reached by approaching zero collisional temperature. However, the multipole-forbidden energy transfer mechanism can become important for Penning ionization in doped helium droplets.

2.
J Chem Phys ; 145(14): 144307, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27782524

ABSTRACT

We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

3.
Faraday Discuss ; 194: 117-145, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27711817

ABSTRACT

The excited state non-adiabatic dynamics of polyatomic molecules, leading to the coupling of structural and electronic dynamics, is a fundamentally important yet challenging problem for both experiment and theory. Ongoing developments in ultrafast extreme vacuum ultraviolet (XUV) and soft X-ray sources present new probes of coupled electronic-structural dynamics because of their novel and desirable characteristics. As one example, inner-shell spectroscopy offers localized, atom-specific probes of evolving electronic structure and bonding (via chemical shifts). In this work, we present the first on-the-fly ultrafast X-ray time-resolved absorption spectrum simulations of excited state wavepacket dynamics: photo-excited ethylene. This was achieved by coupling the ab initio multiple spawning (AIMS) method, employing on-the-fly dynamics simulations, with high-level algebraic diagrammatic construction (ADC) X-ray absorption cross-section calculations. Using the excited state dynamics of ethylene as a test case, we assessed the ability of X-ray absorption spectroscopy to project out the electronic character of complex wavepacket dynamics, and evaluated the sensitivity of the calculated spectra to large amplitude nuclear motion. In particular, we demonstrate the pronounced sensitivity of the pre-edge region of the X-ray absorption spectrum to the electronic and structural evolution of the excited-state wavepacket. We conclude that ultrafast time-resolved X-ray absorption spectroscopy may become a powerful tool in the interrogation of excited state non-adiabatic molecular dynamics.

4.
Nat Chem ; 7(11): 921-6, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26492013

ABSTRACT

The role of internal molecular degrees of freedom, such as rotation, has scarcely been explored experimentally in low-energy collisions despite their significance to cold and ultracold chemistry. Particularly important to astrochemistry is the case of the most abundant molecule in interstellar space, hydrogen, for which two spin isomers have been detected, one of which exists in its rotational ground state whereas the other is rotationally excited. Here we demonstrate that quantization of molecular rotation plays a key role in cold reaction dynamics, where rotationally excited ortho-hydrogen reacts faster due to a stronger long-range attraction. We observe rotational state-dependent non-Arrhenius universal scaling laws in chemi-ionization reactions of para-H2 and ortho-H2 by He(2(3)P2), spanning three orders of magnitude in temperature. Different scaling laws serve as a sensitive gauge that enables us to directly determine the exact nature of the long-range intermolecular interactions. Our results show that the quantum state of the molecular rotor determines whether or not anisotropic long-range interactions dominate cold collisions.

SELECTION OF CITATIONS
SEARCH DETAIL
...