Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Mol Biol ; 32(6): 603-614, 2023 12.
Article in English | MEDLINE | ID: mdl-37265417

ABSTRACT

Insect CAPA-PVK (periviscerokinin) and pyrokinin (PK) neuropeptides belong to the PRX family peptides and are produced from capa and pyrokinin genes. We identified and characterised the two genes from the western flower thrips, Frankliniella occidentalis. The capa gene transcribes three splice variants, capa-a, -b, and -c, encoding two CAPA-PVKs (EVQGLFPFPRVamide; QGLIPFPRVamide) and two PKs (ASWMPSSSPRLamide; DSASFTPRLamide). The pyrokinin mRNA encodes three PKs: DLVTQVLQPGQTGMWFGPRLamide, SEGNLVNFTPRLamide, and ESGEQPEDLEGSMGGAATSRQLRTDSEPTWGFSPRLamide, the most extended pheromone biosynthesis activating neuropeptide (PBAN) ortholog in insects. Multiple potential endoproteolytic cleavage sites were presented in the prepropeptides from the pyrokinin gene, creating ambiguity to predict mature peptides. To solve this difficulty, we used three G protein-coupled receptors (GPCRs) for CAPA-PVK, tryptophan PK (trpPK), and PK peptides, and evaluated the binding affinities of the peptides. The binding activities revealed each subfamily of peptides exclusively bind to their corresponding receptors, and were significant for determining the CAPA-PVK and PK peptides. Our biological method using specific GPCRs would be a valuable tool for determining mature peptides, particularly with multiple and ambiguous cleavage sites in those prepropeptides. Both capa and pyrokinin mRNAs were strongly expressed in the head/thorax, but minimally expressed in the abdomen. The two genes also were clearly expressed during most of the life stages. Whole-mounting immunocytochemistry revealed that neurons contained PRXamide peptides throughout the whole-body: four to six neurosecretory cells in the head, and three and seven pairs of immunostained cells in the thorax and abdomen, respectively. Notably, the unusual PRXamide profiles of Thysanoptera are different from the other insect groups.


Subject(s)
Thysanoptera , Animals , Thysanoptera/metabolism , Amino Acid Sequence , Peptides , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Insecta/metabolism
2.
Int J Radiat Biol ; 95(3): 360-367, 2019 03.
Article in English | MEDLINE | ID: mdl-30499761

ABSTRACT

PURPOSE: The objective of the present study was to elucidate the mode of indirect action of electron beam irradiation at the molecular level against a quarantine pest, Spodoptera litura (F.). MATERIAL AND METHODS: Electron beam irradiation (50-200 Gy) was applied to S. litura eggs, larvae, pupae, and adults, after which the feeding area, body weight, deformity of pupae and adults, ovarian development, expression levels of vitellogenin (Vg) and vitellogenin receptor (VgR) genes, and protein levels were analyzed. RESULTS: The amount of feeding by S. litura larvae and the synthesis level of 70 kDa storage protein significantly decreased as the electron beam dose increased. When larvae were treated with the electron beam, morphological deformities appeared in the pupae, and abnormal wing disc (AWD) expression significantly decreased. Ovarian development was completely inhibited in emerged adults that had undergone 200 Gy electron beam irradiation as pupae. Quantitative real-time PCR (qRT-PCR) assays showed significant downregulation of the Vg and VgR genes due to electron beam irradiation; whereas the synthesis level of Vg protein (190 kDa) did not decrease with time in eggs unlike in non-irradiated (control) S. litura eggs, exhibiting irradiation induced impairment of Vg functioning. CONCLUSIONS: These findings of radiation-induced abnormal development and sterility in S. litura together with the correlated changes at the molecular level may facilitate the development of a phytosanitary strategy against this quarantine pest using electron beam irradiation.


Subject(s)
Electrons/adverse effects , Gene Expression Regulation, Developmental/radiation effects , Infertility/etiology , Infertility/genetics , Spodoptera/genetics , Spodoptera/radiation effects , Animals , Body Weight/radiation effects , Dose-Response Relationship, Radiation , Female , Ovary/growth & development , Ovary/radiation effects , Spodoptera/physiology
3.
J Econ Entomol ; 111(2): 725-731, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29401226

ABSTRACT

The Sakhalin pine longicorn, Monochamus saltuarius (Gebler; Coleoptera: Cerambycidae), is an insect vector of the pine wilt nematode (PWN), Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, and is widely distributed in central Korea. M. saltuarius is a forest pest that seriously damages Pinus densiflora (Siebold et Zucc, Pinales: Pinaceae) and Pinus koraiensis (Siebold & Zucc, Pinales: Pinaceae) forests. We examined the effect of electron beam irradiation on the mating, DNA damage and ovarian development of M. saltuarius adults and sought to identify the optimal dose for sterilizing insects. When the adults were irradiated with electron beams, both females and males were completely sterile at 200 Gy. In a reciprocal crossing experiment between unirradiated and irradiated adults, the reproductive ability of wild adults was recovered by crossing with wild adults even after crossing previously with sterile adults. When a pair of unirradiated adults (♀- × â™‚-) and 10 or 20 irradiated adults (♀+ or ♂+) were kept together, the control effect was as high as 80~90%. After electron beam irradiation at 200 Gy, the DNA of M. saltuarius adults was damaged, the ovarian development of female adults was inhibited, and the level of vitellogenin was significantly decreased compared with that in unirradiated female adults. These results suggest that pine wilt disease can be effectively controlled if a large number of sterilized M. saltuarius male adults are released into the field.


Subject(s)
Coleoptera , Electrons , Insect Control , Insect Vectors , Animals , Coleoptera/growth & development , Coleoptera/physiology , DNA Damage , Female , Fertility , Male , Ovary/growth & development , Pinus/parasitology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Tylenchida/physiology
4.
J Econ Entomol ; 110(2): 416-420, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28334123

ABSTRACT

Lily (Lilium longiflorum Thunb.) is the most representative bulb flower, and it is the third most important flower in the flower industry of South Korea after rose and chrysanthemum. To determine the efficacy of X-ray irradiation for use in quarantine processing, two species of flower thrips (Frankliniella intonsa (Trybom) and Frankliniella occidentalis (Pergande)) were placed in the top, middle, and bottom locations of lily boxes and irradiated with different X-ray doses. After irradiation with an X-ray dose of 150 Gy, the egg hatching of the two flower thrips was completely inhibited at every location in the lily boxes, and the irradiated F. intonsa and F. occidentalis nymphs failed to emerge as adult in every location of the lily boxes. When the adults were irradiated at 150 Gy, the fecundity of the two flower thrips was markedly lower than that of the untreated control groups. The F1 generation failed to hatch at the top and middle locations, whereas the F1 generation of both F. intonsa and F. occidentalis was not suppressed at the bottom locations, even at 200 Gy. However, hatching was perfectly inhibited at 300 Gy of X-ray irradiation. Also, X-rays did not affect the postharvest physiology of cut lilies. Therefore, a minimum dose of 300 Gy is recommended for the control of F. intonsa and F. occidentalis for the exportation of lily.


Subject(s)
Pest Control, Biological , Thysanoptera/radiation effects , X-Rays , Animals , Female , Fertility/radiation effects , Flowers , Lilium/physiology , Lilium/radiation effects , Nymph/growth & development , Nymph/radiation effects , Republic of Korea , Thysanoptera/growth & development , Thysanoptera/physiology
5.
J Insect Sci ; 162016.
Article in English | MEDLINE | ID: mdl-26798140

ABSTRACT

This study compared stress-induced expression of Cu-Zn superoxide dismutase (SOD1) and thioredoxin reductase (TrxR) genes in the European honeybee Apis mellifera L. and Asian honeybee Apis cerana F. Expression of both SOD1 and TrxR rapidly increased up to 5 h after exposure to cold (4 °C) or heat (37 °C) treatment and then gradually decreased, with a stronger effect induced by cold stress in A. mellifera compared with A. cerana. Injection of stress-inducing substances (methyl viologen, [MV] and H2O2) also increased SOD1 and TrxR expression in both A. mellifera and A. cerana, and this effect was more pronounced with MV than H2O2. Additionally, we heterologously expressed the A. mellifera and A. cerana SOD1 and TrxR proteins in an Escherichia coli expression system, and detection by SDS-PAGE, confirmed by Western blotting using anti-His tag antibodies, revealed bands at 16 and 60 kDa, respectively. Our results show that the expression patterns of SOD1 and TrxR differ between A. mellifera and A. cerana under conditions of low or high temperature as well as oxidative stress.


Subject(s)
Bees/enzymology , Superoxide Dismutase/physiology , Thioredoxin-Disulfide Reductase/physiology , Animals , Bees/physiology , Blotting, Western , Cold Temperature , Electrophoresis, Polyacrylamide Gel , Hot Temperature , RNA, Messenger/metabolism , Stress, Physiological/physiology , Superoxide Dismutase/metabolism , Superoxide Dismutase-1 , Thioredoxin-Disulfide Reductase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...