Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2402268, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733239

ABSTRACT

A high-quality nanostructured tin oxide (SnO2) has garnered massive attention as an electron transport layer (ETL) for efficient perovskite solar cells (PSCs). SnO2 is considered the most effective alternative to titanium oxide (TiO2) as ETL because of its low-temperature processing and promising optical and electrical characteristics. However, some essential modifications are still required to further improve the intrinsic characteristics of SnO2, such as mismatch band alignments, charge extraction, transportation, conductivity, and interfacial recombination losses. Herein, an inorganic-based cesium (Cs) dopant is used to modify the SnO2 ETL and to investigate the impact of Cs-dopant in curing interfacial defects, charge-carrier dynamics, and improving the optoelectronic characteristics of PSCs. The incorporation of Cs contents efficiently improves the perovskite film quality by enhancing the transparency, crystallinity, grain size, and light absorption and reduces the defect states and trap densities, resulting in an improved power conversion efficiency (PCE) of ≈22.1% with Cs:SnO2 ETL, in-contrast to pristine SnO2-based PSCs (20.23%). Moreover, the Cs-modified SnO2-based PSCs exhibit remarkable environmental stability in a relatively higher relative humidity environment (>65%) and without encapsulation. Therefore, this work suggests that Cs-doped SnO2 is a highly favorable electron extraction material for preparing highly efficient and air-stable planar PSCs.

2.
ACS Appl Mater Interfaces ; 15(24): 29643-29652, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37287192

ABSTRACT

To investigate the effect of miscibility between conjugated polymers (CPs) and Y6 on bulk-heterojunction (BHJ) type morphology, we propose three different CPs with similar chemical structures but different miscibility with Y6. After selectively removing Y6 from the CP/Y6 blend films, their interface morphology and interlocked dimensions are quantitatively compared using a square-wave model. As CP-Y6 miscibility increases, a higher intermixed interface is formed, providing an enlarged CP-Y6 interface area. Conversely, as the miscibility between CP and Y6 decreases, the height and width of the interlocked dimensions formed by phase separation gradually decrease and increase, respectively. Additionally, when the CP-Y6 interface morphology and electrical properties of the corresponding organic photovoltaic (OPV) device are correlated, as the highly intermixed CP-Y6 interface develops, the exciton dissociation efficiency increases owing to the reduced exciton diffusion length to be dissociated, but the bimolecular recombination tends to deteriorate simultaneously. Furthermore, if the miscibility between CP and Y6 is excessive, the formation of a charge transport pathway through phase separation is interrupted, deteriorating the charge transport capability in BHJ-type OPVs. However, it was confirmed that introducing F atoms into the conjugated backbone of CP can reduce the bimolecular recombination, providing ameliorated light-harvesting efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...