Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 10(3): 829-841, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36597945

ABSTRACT

Although Li- and Mn-rich layered oxides are attractive cathode materials possessing high energy densities, they have not been commercialized owing to voltage decay, low rate capability, poor capacity retention, and high irreversible capacity in the first cycle. To circumvent these issues, we propose a Li1.2Ni0.13Co0.13Mn0.53Nb0.01O2 (Nb-LNCM) cathode material, wherein Nb doping strengthens the transition metal oxide (TM-O) bond and alleviates the anisotropic lattice distortion while stabilizing the layered structure. During long-term cycling, maintaining a wider LiO6 interslab thickness in Nb-LNCM creates a favorable Li+ diffusion path, which improves the rate capability. Moreover, Nb doping can decrease oxygen loss, suppress the phase transition from layered to spinel and rock-salt structures, and relieve structural degradation. Nb doping results in less capacity contributions of Mn and Co and more reversible Ni and O redox reactions compared to pristine Li1.2Ni0.133Co0.133Mn0.533O2 (LNCM), which significantly mitigates the voltage decay (Δ0.289 and Δ0.516 V for Nb-LNCM and LNCM, respectively) and ensures stable capacity retention (82.7 and 70.3% for Nb-LNCM and LNCM, respectively) during the initial 100 cycles. Our study demonstrates that Nb doping is an effective and practical strategy to enhance the structural and electrochemical integrity of Li- and Mn-rich layered oxides. This promotes the development of stable cathode materials for high-energy-density lithium-ion batteries.

2.
Phys Chem Chem Phys ; 23(29): 15693-15701, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34270664

ABSTRACT

In this study, a new sI-sII dual hydrate former [chlorodifluoromethane (CHClF2); an important greenhouse gas with a global warming potential of 1810], which forms sI hydrate by itself and forms sII hydrate in the presence of external help guests such as CH4 and N2, was introduced and closely investigated for its potential significance in gas hydrate-based gas separation. The phase equilibria of CHClF2 hydrate, binary CHClF2 (5%) + N2 (95%) hydrate, and binary CHClF2 (5%) + CH4 (95%) hydrate were measured to examine the formation conditions and thermodynamic stability regions of CHClF2 + external guest hydrates. Nuclear magnetic resonance and in situ Raman spectroscopic results confirmed the formation of sII hydrates for CHClF2 + external guest (N2 or CH4) mixtures. Powder X-ray diffraction patterns clearly demonstrated a structural transition of sI to sII hydrates and a preferential incorporation of CHClF2 molecules in the hydrate phase when external guests (N2 or CH4) were involved in CHClF2 hydrate formation. The measured dissociation enthalpy values of CHClF2 hydrate, binary CHClF2 (5%) + N2 (95%) hydrate, and binary CHClF2 (5%) + CH4 (95%) hydrate using a high-pressure micro-differential scanning calorimeter also indicated preferential CHClF2 enclathration. The experimental results provide new insights into the thermodynamic and structural features of the CHClF2 (sI-sII dual hydrate former) + external guest hydrates for understanding and designing the hydrate-based CHClF2 separation process.

3.
Small ; 16(5): e1905875, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31943743

ABSTRACT

The anionic redox chemistries of layered cathode materials have been in focus recently due to an intriguing phenomenon that cannot be described by the number of electrons of transition metal ions. However, even though several studies have investigated the anionic redox chemistry of layered materials in terms of the charge compensation, the relationship between the origin of the structural behavior and anionic redox chemistry in layered materials remains poorly understood. In addition, a simultaneous redox process of transition metal ions could occur through the d bands interaction. Here, it is demonstrated that the anionic redox chemistry is associated with the anisotropic structural behavior of the layered cathode materials albeit without providing additional capacities exceeding the theoretical values. These findings will provide a foundation of a new chapter in the understanding of the properties of materials.

4.
Materials (Basel) ; 12(8)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018566

ABSTRACT

High theoretical capacity and low-cost copper sulfide (CuxS)-based anodes have gained great attention for advanced sodium-ion batteries (SIBs). However, their practical application may be hindered due to their unstable cycling performance and problems with the dissolution of sodium sulfides (NaxS) into electrolyte. Here, we employed metal organic framework (MOF-199) as a sacrificial template to fabricate nanoporous CuxS with a large surface area embedded in the MOF-derived carbon network (CuxS-C) through a two-step process of sulfurization and carbonization via H2S gas-assisted plasma-enhanced chemical vapor deposition (PECVD) processing. Subsequently, we uniformly coated a nanocarbon layer on the Cu1.8S-C through hydrothermal and subsequent annealing processes. The physico-chemical properties of the nanocarbon layer were revealed by the analytical techniques of high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). We acquired a higher SIB performance (capacity retention (~93%) with a specific capacity of 372 mAh/g over 110 cycles) of the nanoporous Cu1.8S-C/C core/shell anode materials than that of pure Cu1.8S-C. This encouraging SIB performance is attributed to the key roles of a nanocarbon layer coated on the Cu1.8S-C to accommodate the volume variation of the Cu1.8S-C anode structure during cycling, enhance electrical conductivity and prevent the dissolution of NaxS into the electrolyte. With these physico-chemical and electrochemical properties, we ensure that the Cu1.8S-C/C structure will be a promising anode material for large-scale and advanced SIBs.

5.
Nucleic Acid Ther ; 24(5): 364-71, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25211666

ABSTRACT

Small interfering RNAs (siRNAs) guide RNA-induced silencing complexes (RISC) to target mRNAs for sequence-specific silencing. A fundamental aspect of this highly coordinated process is a guide strand-specific loading of the siRNA duplex into the RISC for the accurate target recognition, which is currently dictated by certain duplex parameters such as thermodynamics. Here, we show that minor changes in the overhang structure have profound effects on the extent to which the individual strands of the siRNA duplex participate in RNAi activity. We demonstrate that the two strands of the siRNA are similarly eligible for assembly into RISC for the siRNAs with symmetric overhangs, whereas those with asymmetric RNA/deoxythymidine dinucleotide (dTdT) overhangs exhibit a distinct preference in favor of a strand with an RNA overhang that drives a mature RISC affinity to the desired target. We believe that this additional determinant provides a plausible and simple approach for improving the strand selection, thereby considerably increasing a specificity of target silencing.


Subject(s)
RNA Interference , RNA, Small Interfering/genetics , RNA-Induced Silencing Complex/antagonists & inhibitors , Thymidine/chemistry , Base Sequence , Binding Sites , Cell Line , Gene Expression , Genes, Reporter , HeLa Cells , Humans , Luciferases/antagonists & inhibitors , Luciferases/genetics , Luciferases/metabolism , Molecular Sequence Data , Nucleic Acid Conformation , Plasmids/chemistry , Plasmids/metabolism , RNA, Small Interfering/chemical synthesis , RNA, Small Interfering/metabolism , RNA-Induced Silencing Complex/genetics , RNA-Induced Silencing Complex/metabolism , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , Thermodynamics , Thymidine/metabolism
6.
Biochem J ; 461(3): 427-34, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24800867

ABSTRACT

siRNAs are short dsRNAs that mediate efficient target gene silencing in a sequence-specific manner. We previously developed a novel siRNA structure, called asiRNA (asymmetric siRNA), which alleviates the off-target effects associated with conventional siRNA structures without decreasing target gene silencing potency. In the present study, we explored the effect of the guide strand 3'-end structure on the gene silencing potency of asiRNA. Interestingly, asiRNAs with a 21 nt guide strand solely composed of RNA resulted in gene silencing that was more than 6-fold more efficient compared with the corresponding asiRNA guide strand harbouring a dTdT (deoxythymidine dinucleotide) at its 3'-end. We demonstrated that the molecular basis of potency of the asiRNA with a 21 nt guide strand composed solely of RNA was due to the enhanced formation of the RISC (RNA-induced silencing complex) and increased affinity towards hAgo2 (human Argonaute2). Our observations may assist researchers in designing new asiRNAs with high on-target silencing efficiency with low off-target effects, which is critical for applications in both basic research and therapeutic development.


Subject(s)
3' Untranslated Regions , Gene Silencing , RNA, Small Interfering/metabolism , Animals , Argonaute Proteins/antagonists & inhibitors , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Base Sequence , Cell Line , Cell-Free System/metabolism , E-Selectin/chemistry , E-Selectin/genetics , E-Selectin/metabolism , HEK293 Cells , HeLa Cells , Humans , Kinetics , Mice , Nucleotide Motifs , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , RNA Interference , RNA, Small Interfering/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...