Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 11(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36679898

ABSTRACT

Porcine parvovirus (PPV) causes reproductive failure in sows, and vaccination remains the most effective means of preventing infection. The NADL-2 strain has been used as a vaccine for ~50 years; however, it does not protect animals against genetically heterologous PPV strains. Thus, new effective and safe vaccines are needed. In this study, we aimed to identify novel PPV1 strains, and to develop PPV1 subunit vaccines. We isolated and sequenced PPV1 VP2 genes from 926 pigs and identified ten PPV1 strains (belonging to Groups C, D and E). We selected the Group D PPV1-82 strain as a vaccine candidate because it was close to the highly pathogenic 27a strain. The PPV1-82 VP2 protein was produced in Nicotiana benthamiana. It formed virus-like particles and exhibited a 211 agglutination value. The PPV1-190313 strain (Group E), isolated from an aborted fetus, was used as the challenging strain because it was pathogenic. The unvaccinated sow miscarried at 8 days postchallenge, and mummified fetuses were all PPV1-positive. By contrast, pregnant sows vaccinated with PPV1-82 VP2 had 9-11 Log2 antibody titers and produced normal fetuses after PPV1-190313 challenge. These results suggest the PPV1-82 VP2 subunit vaccine protects pregnant sows against a genetically heterologous PPV1 strain by inducing neutralizing antibodies.

2.
J Neural Transm (Vienna) ; 122(7): 993-1005, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26123835

ABSTRACT

Brain function in normal aging and neurological diseases has long been a subject of interest. With current technology, it is possible to go beyond descriptive analyses to characterize brain cell populations at the molecular level. However, the brain comprises over 100 billion highly specialized cells, and it is a challenge to discriminate different cell groups for analyses. Isolating intact neurons is not feasible with traditional methods, such as tissue homogenization techniques. The advent of laser microdissection techniques promises to overcome previous limitations in the isolation of specific cells. Here, we provide a detailed protocol for isolating and analyzing neurons from postmortem human brain tissue samples. We describe a workflow for successfully freezing, sectioning and staining tissue for laser microdissection. This protocol was validated by mass spectrometric analysis. Isolated neurons can also be employed for western blotting or PCR. This protocol will enable further examinations of brain cell-specific molecular pathways and aid in elucidating distinct brain functions.


Subject(s)
Brain/cytology , Neurons/metabolism , Proteome/metabolism , Aged , Aged, 80 and over , Female , Humans , Laser Capture Microdissection , Male , Middle Aged , Postmortem Changes , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...