Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 93(10): 4796-807, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26523573

ABSTRACT

This study was conducted to evaluate the pilot-scale production of microencapsulated in a 500-L fermenter using emulsion and gelation and to assess the effect of the products on the growth performance, antioxidant activity, immune function, and cecal microbiota in Arbor Acres broilers. A total of seven hundred 1-d-old male Arbor Acres broilers were randomly assigned to 7 dietary treatments with 5 replicate pens per treatment and 20 broilers per pen. The dietary treatments were as follows: 1) basal diet (CON), 2) basal diet containing 0.1% Aureomycin (ANT), 3) basal diet containing unencapsulated at a dose of 1 × 10 cfu/kg of feed (P1), 4) basal diet containing unencapsulated at a dose of 1 × 10 cfu/kg of feed (P2), 5) basal diet containing 0.01% empty microcapsules (CAP), 6) basal diet containing microencapsulated at a dose of 1 × 10 cfu/kg of feed (CAPP1), and 7) basal diet containing microencapsulated at a dose of 1 × 10 cfu/kg of feed (CAPP2). The feeding experiment included 2 phases: the starter phase from d 1 to 21 and the grower phase from d 22 to 42. The results showed that a 500-L fermenter could produce 20.73 ± 4.05 kg of microcapsules with an approximate diameter of 549 µm. The feeding experiment showed that ADG of broilers in CAPP1 was significantly ( < 0.05) greater than that in CON and CAP throughout the feeding period, whereas the ratio of feed to gain (G:F) was significantly ( < 0.05) lower. Broilers in P1, P2, CAPP1, and CAPP2 had significantly ( < 0.05) greater levels of total superoxide dismutase, catalase, IgG, and cluster of differentiation 3 than those in CON. Furthermore, broilers in CAPP1 had significantly ( < 0.05) greater richness and diversity of intestinal microorganisms, particularly of , than those in all other dietary treatments. In summary, our results indicate that large-scale microencapsulation of microbial cells can be achieved using emulsion and initial gelation and that the dietary administration of microencapsulated can significantly enhance the growth performance, immune function, cecum microbial community, and overall health of broilers.


Subject(s)
Animal Feed/analysis , Chickens/growth & development , Drug Compounding/veterinary , Probiotics/pharmacology , Animal Nutritional Physiological Phenomena/drug effects , Animals , Cecum/drug effects , Chlortetracycline/pharmacology , Diet , Intestines , Male , Microbiota , Probiotics/administration & dosage
2.
Poult Sci ; 94(11): 2821-30, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26371326

ABSTRACT

The effects of microencapsulation of Enterococcus faecalis on the growth performance, antioxidant activity, immune function, and cecal microbiota in broilers were investigated. Broilers (1-day-old) were assigned randomly as follows: 5 treatments, 5 replicate pens per treatment, and 20 broilers per pen. Treatments included (1) a basal diet (CON), (2) CON + Aureomycin (1 g/kg of diet) (ANT), (3) CON + free non-encapsulated probiotics (1 × 10(9) cfu/kg of diet) (FREE), (4) CON + pro-encapsulated probiotics (1 × 10(9) cfu/kg of diet) (PRO), and (5) CON + pre-encapsulated probiotics (1 × 10(9) cfu/kg of diet) (PRE). Feedings included starter (1 to 21 d) and grower (21 to 42 d) phases. In the starter phase, the ANT and the PRE groups had greater (P < 0.05) ADG than the CON groups, and the feed conversion ratio (FCR) for these 2 groups was decreased (P < 0.05). In the finisher phase, the PRE and PRO groups had greater (P < 0.05) ADG than the CON group and their FCR was decreased significantly (P < 0.05). During the entire feeding period, only the PRE group showed greater (P < 0.05) ADG and lower (P < 0.05) FCR. On day 21, only birds in the PRE group had greater (P < 0.05) total antioxidant capacity and number of Lactobacillus than the CON group. On day 42, The PRE group showed greater (P < 0.05) superoxide dismutase than the CON group. Serum IgA and IgM concentrations were increased (P < 0.05) in the PRE group. Serum IL-6 in the PRE group was greater (P < 0.05) than in the other groups with the exception of ANT. At the phylum level, Firmicutes was enriched (P < 0.05) and Proteobacteria was depleted (P < 0.05) only in the PRE group. At the genus level, only the PRE diets increased (P < 0.05) the number of both Lactobacillus and Enterococcus. The results indicate that pre-encapsulation assists the efficient functioning of probiotics in broilers.


Subject(s)
Animal Nutritional Physiological Phenomena , Chickens/microbiology , Chickens/physiology , Diet/veterinary , Enterococcus faecalis/chemistry , Probiotics , Animal Feed/analysis , Animals , Antioxidants/metabolism , Cecum/microbiology , Chickens/growth & development , Chickens/immunology , Emulsions , Enterococcus faecalis/physiology , Male , Microbiota , Probiotics/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...