Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 334
Filter
1.
Cancer Lett ; 598: 217085, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964733

ABSTRACT

LncRNA plays a crucial role in cancer progression and targeting, but it has been difficult to identify the critical lncRNAs involved in colorectal cancer (CRC) progression. We identified FAM83H-AS1 as a tumor-promoting associated lncRNA using 21 pairs of stage IV CRC tissues and adjacent normal tissues. In vitro and in vivo experiments revealed that knockdown of FAM83H-AS1 in CRC cells inhibited tumor proliferation and metastasis, and vice versa. M6A modification is critical for FAM83H-AS1 RNA stability through the writer METTL3 and the readers IGF2BP2/IGFBP3. PTBP1-an RNA binding protein-is responsible for the FAM83H-AS1 function in CRC. T4 (1770-2440 nt) and T5 (2440-2743 nt) on exon 4 of FAM83H-AS1 provide a platform for PTBP1 RRM2 interactions. Our results demonstrated that m6A modification dysregulated the FAM83H-AS1 oncogenic role by phosphorylated PTBP1 on its RNA splicing effect. In patient-derived xenograft models, ASO-FAM83H-AS1 significantly suppressed the growth of gastrointestinal (GI) tumors, not only CRC but also GC and ESCC. The combination of ASO-FAM83H-AS1 and oxaliplatin/cisplatin significantly suppressed tumor growth compared with treatment with either agent alone. Notably, there was pathological complete response in all these three GI cancers. Our findings suggest that FAM83H-AS1 targeted therapy would benefit patients primarily receiving platinum-based therapy in GI cancers.

2.
J Chem Inf Model ; 64(13): 5207-5218, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38913174

ABSTRACT

Nirmatrelvir, a pivotal component of the oral antiviral Paxlovid for COVID-19, targets the SARS-CoV-2 main protease (Mpro) as a covalent inhibitor. Here, we employed combined computational methods to explore how the prevalent Omicron variant mutation P132H, alone and in combination with A173V (P132H-A173V), affects nirmatrelvir's efficacy. Our findings suggest that P132H enhances the noncovalent binding affinity of Mpro for nirmatrelvir, whereas P132H-A173V diminishes it. Although both mutants catalyze the rate-limiting step more efficiently than the wild-type (WT) Mpro, P132H slows the overall rate of covalent bond formation, whereas P132H-A173V accelerates it. Comprehensive analysis of noncovalent and covalent contributions to the overall binding free energy of the covalent complex suggests that P132H likely enhances Mpro sensitivity to nirmatrelvir, while P132H-A173V may confer resistance. Per-residue decompositions of the binding and activation free energies pinpoint key residues that significantly affect the binding affinity and reaction rates, revealing how the mutations modulate these effects. The mutation-induced conformational perturbations alter drug-protein local contact intensities and the electrostatic preorganization of the protein, affecting noncovalent binding affinity and the stability of key reaction states, respectively. Our findings inform the mechanisms of nirmatrelvir resistance and sensitivity, facilitating improved drug design and the detection of resistant strains.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Mutation , SARS-CoV-2 , SARS-CoV-2/enzymology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , COVID-19 Drug Treatment , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Leucine/chemistry , Thermodynamics , Sulfonamides/pharmacology , Sulfonamides/chemistry , Sulfonamides/metabolism , Protein Binding , Succinates/chemistry , Succinates/pharmacology , Succinates/metabolism , Lactams , Nitriles , Proline
3.
Ann Acad Med Singap ; 53(5): 277-285, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38920219

ABSTRACT

Introduction: Classification criteria for systemic lupus erythematosus (SLE) include American College of Rheumatology (ACR) 1997, Systemic Lupus Erythematosus International Collaborating Clinics (SLICC) 2012 and European Alliance of Associations for Rheumatology (EULAR)/ACR 2019 criteria. Their performance in an Asian childhood-onset SLE (cSLE) population remains unclear as the clinical manifestations differ. We aim to evaluate the diagnostic performance in a cSLE cohort in Singapore. Method: Cases were physician-diagnosed cSLE, while controls were children with mixed and undifferentiated connective tissue disease that posed an initial diagnostic challenge. Data were retrospec-tively reviewed to establish the 3 criteria fulfilled at diagnosis and over time. Results: The study population included 120 cSLE cases and 36 controls. At diagnosis, 102 (85%) patients fulfilled all criteria. SLICC-2012 had the highest sensitivity (97.5%, 95% confidence interval [CI] 92.3-99.5), while ACR-1997 had the highest specificity (91.7%, 95% CI 77.5-98.3). All criteria had diagnostic accuracies at more than 85%. Over time, 113 (94%) fulfilled all criteria. SLICC-2012 remained the criteria with the highest sensitivity (99.2%, 95% CI 95.4-99.9), while ACR-1997 had the highest specificity (75.0%, 95% CI 57.8-87.9). Only SLICC-2012 and ACR-1997 had more than 85% diagnostic accuracy over time. Using a cutoff score of ≥13 for EULAR/ACR-2019 criteria resulted in improved diagnostic performance. Conclusion: SLICC-2012 criteria had the highest sensitivity early in the disease course in this first study evaluating the SLE classification criteria performance in a Southeast Asian cSLE cohort, while the ACR-1997 criteria had the highest specificity. Using a cutoff score of ≥13 for EULAR/ACR-2019 improved the diagnostic performance.


Subject(s)
Lupus Erythematosus, Systemic , Sensitivity and Specificity , Humans , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/classification , Singapore , Female , Male , Child , Case-Control Studies , Adolescent , Retrospective Studies , Age of Onset
4.
World J Clin Cases ; 12(11): 1954-1959, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38660552

ABSTRACT

BACKGROUND: To retrospectively report the safety and efficacy of renal transcatheter arterial embolization for treating autosomal dominant polycystic kidney disease (ADPKD) patients with gross hematuria. CASE SUMMARY: The purpose of this study is to retrospectively report the safety and efficacy of renal transcatheter arterial embolization for treating ADPKD patients with gross hematuria. Materials and methods: During the period from January 2018 to December 2019, renal transcatheter arterial embolization was carried out on 6 patients with polycystic kidneys and gross hematuria. Renal arteriography was performed first, and then we determined the location of the hemorrhage and performed embolization under digital subtraction angiography monitoring. Improvements in routine blood test results, routine urine test results, urine color and postoperative reactions were observed and analyzed. Results: Renal transcatheter arterial embolization was successfully conducted in 6 patients. The indices of 5 patients and the color of gross hematuria improved after surgery compared with before surgery. No severe complication reactions occurred. CONCLUSION: For autosomal dominant polycystic kidney syndrome patients with gross hematuria, transcatheter arterial embolization was safe and effective.

5.
Clin Rheumatol ; 43(5): 1723-1733, 2024 May.
Article in English | MEDLINE | ID: mdl-38443603

ABSTRACT

BACKGROUND: To compare outcomes of a short and long weaning strategy of anti-tumor necrosis factor (aTNF) in our prospective juvenile idiopathic arthritis (JIA) cohort. RESEARCH DESIGN AND METHODS: JIA patients on subcutaneous adalimumab with at least 6 months of follow-up were recruited (May 2010-Jan 2022). Once clinical remission on medication (CRM) was achieved, adalimumab was weaned according to two protocols-short (every 4-weekly for 6 months and stopped) and long (extending dosing interval by 2 weeks for three cycles until 12-weekly intervals and thereafter stopped) protocols. Outcomes assessed were flare rates, time to flare, and predictors. RESULTS: Of 110 JIA patients, 77 (83% male, 78% Chinese; 82% enthesitis-related arthritis) underwent aTNF weaning with 53% on short and 47% on long weaning protocol. The total flare rate during and after stopping aTNF was not different between the two groups. The time to flare after stopping aTNF was not different (p = 0.639). Positive anti-nuclear antibody increased flare risk during weaning in long weaning group (OR 7.0, 95%CI: 1.2-40.8). Positive HLA-B27 (OR 6.5, 95%CI: 1.1-30.4) increased flare risks after stopping aTNF. CONCLUSION: Duration of weaning aTNF may not minimize flare rate or delay time to flare after stopping treatment in JIA patients. Recapture rates for inactive disease at 6 months remained high for patients who flared after weaning or discontinuing medication.


Subject(s)
Antirheumatic Agents , Arthritis, Juvenile , Female , Humans , Male , Adalimumab/therapeutic use , Antirheumatic Agents/therapeutic use , Arthritis, Juvenile/drug therapy , Prospective Studies , Treatment Outcome , Tumor Necrosis Factor-alpha/therapeutic use
6.
Signal Transduct Target Ther ; 9(1): 74, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528022

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection disrupts the epithelial barrier and triggers airway inflammation. The envelope (E) protein, a core virulence structural component of coronaviruses, may play a role in this process. Pathogens could interfere with transepithelial Cl- transport via impairment of the cystic fibrosis transmembrane conductance regulator (CFTR), which modulates nuclear factor κB (NF-κB) signaling. However, the pathological effects of SARS-CoV-2 E protein on airway epithelial barrier function, Cl- transport and the robust inflammatory response remain to be elucidated. Here, we have demonstrated that E protein down-regulated the expression of tight junctional proteins, leading to the disruption of the airway epithelial barrier. In addition, E protein triggered the activation of Toll-like receptor (TLR) 2/4 and downstream c-Jun N-terminal kinase (JNK) signaling, resulting in an increased intracellular Cl- concentration ([Cl-]i) via up-regulating phosphodiesterase 4D (PDE4D) expression in airway epithelial cells. This elevated [Cl-]i contributed to the heightened airway inflammation through promoting the phosphorylation of serum/glucocorticoid regulated kinase 1 (SGK1). Moreover, blockade of SGK1 or PDE4 alleviated the robust inflammatory response induced by E protein. Overall, these findings provide novel insights into the pathogenic role of SARS-CoV-2 E protein in airway epithelial damage and the ongoing airway inflammation during SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/genetics , COVID-19/metabolism , Inflammation/genetics , Inflammation/metabolism , Signal Transduction , Epithelial Cells/metabolism , Glucocorticoids
7.
Inorg Chem ; 63(11): 4828-4838, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38447051

ABSTRACT

Light-emitting electrochemical cells (LECs) promise low-cost, large-area luminescence applications with air-stabilized electrodes and a versatile fabrication that enables the use of solution processes. Nevertheless, the commercialization of LECs is still encountering many obstacles, such as low electroluminescence (EL) efficiencies of the ionic materials. In this paper, we propose five blue to yellow ionic Ir complexes possessing 4-fluoro-4'-pyrazolyl-(1,1'-biphenyl)-2-carbonitrile (ppfn) as a novel cyclometalating ligand and use them in LECs. In particular, the device within di[4-fluoro-4'-pyrazolyl-(1,1'-biphenyl)-2-carbonitrile]-4,4'-di-tert-butyl-2,2'-bipyridyl iridium(III) hexafluorophosphate (DTBP) shows a remarkable photoluminescence quantum yield (PLQY) of 70%, and by adjusting the emissive-layer thickness, the maximal external quantum efficiency (EQE) reaches 22.15% at 532 nm under the thickness of 0.51 µm, showing the state-of-the-art value for the reported blue-green LECs.

8.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L638-L645, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38375595

ABSTRACT

Pulmonary hypertension (PH) is a condition in which remodeling of the pulmonary vasculature leads to hypertrophy of the muscular vascular wall and extension of muscle into nonmuscular arteries. These pathological changes are predominantly due to the abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), enhanced cellular functions that have been linked to increases in the cell membrane protein aquaporin 1 (AQP1). However, the mechanisms underlying the increased AQP1 abundance have not been fully elucidated. Here we present data that establishes a novel interaction between AQP1 and the proteolytic enzyme caspase-3. In silico analysis of the AQP1 protein reveals two caspase-3 cleavage sites on its C-terminal tail, proximal to known ubiquitin sites. Using biotin proximity ligase techniques, we establish that AQP1 and caspase-3 interact in both human embryonic kidney (HEK) 293A cells and rat PASMCs. Furthermore, we demonstrate that AQP1 levels increase and decrease with enhanced caspase-3 activity and inhibition, respectively. Ultimately, further work characterizing this interaction could provide the foundation for novel PH therapeutics.NEW & NOTEWORTHY Pulmonary arterial smooth muscle cells (PASMCs) are integral to pulmonary vascular remodeling, a characteristic of pulmonary arterial hypertension (PAH). PASMCs isolated from robust animal models of disease demonstrate enhanced proliferation and migration, pathological functions associated with increased abundance of the membrane protein aquaporin 1 (AQP1). We present evidence of a novel interaction between the proteolytic enzyme caspase-3 and AQP1, which may control AQP1 abundance. These data suggest a potential new target for novel PAH therapies.


Subject(s)
Aquaporin 1 , Caspase 3 , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Pulmonary Artery , Animals , Humans , Male , Rats , Aquaporin 1/metabolism , Aquaporin 1/genetics , Caspase 3/metabolism , Cell Proliferation , HEK293 Cells , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats, Sprague-Dawley
9.
Clin Biomech (Bristol, Avon) ; 113: 106188, 2024 03.
Article in English | MEDLINE | ID: mdl-38350282

ABSTRACT

BACKGROUND: Despite the existence of evidence-based rehabilitation strategies that address biomechanical deficits, the persistence of recurrent ankle problems in 70% of patients with acute ankle sprains highlights the unresolved nature of this issue. Artificial intelligence (AI) emerges as a promising tool to identify definitive predictors for ankle sprains. This paper aims to summarize the use of AI in investigating the ankle biomechanics of healthy and subjects with ankle sprains. METHODS: Articles published between 2010 and 2023 were searched from five electronic databases. 59 papers were included for analysis with regards to: i). types of motion tested (functional vs. purposeful ankle movement); ii) types of biomechanical parameters measured (kinetic vs kinematic); iii) types of sensor systems used (lab-based vs field-based); and, iv) AI techniques used. FINDINGS: Most studies (83.1%) examined biomechanics during functional motion. Single kinematic parameter, specifically ankle range of motion, could obtain accuracy up to 100% in identifying injury status. Wearable sensor exhibited high reliability for use in both laboratory and on-field/clinical settings. AI algorithms primarily utilized electromyography and joint angle information as input data. Support vector machine was the most used supervised learning algorithm (18.64%), while artificial neural network demonstrated the highest accuracy in eight studies. INTERPRETATIONS: The potential for remote patient monitoring is evident with the adoption of field-based devices. Nevertheless, AI-based sensors are underutilized in detecting ankle motions at risk of sprain. We identify three key challenges: sensor designs, the controllability of AI models, and the integration of AI-sensor models, providing valuable insights for future research.


Subject(s)
Ankle Injuries , Artificial Intelligence , Humans , Biomechanical Phenomena , Reproducibility of Results , Algorithms
10.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L252-L265, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38226418

ABSTRACT

Pulmonary arterial hypertension (PAH) is a morbid disease characterized by significant lung endothelial cell (EC) dysfunction. Prior work has shown that microvascular endothelial cells (MVECs) isolated from animals with experimental PAH and patients with PAH exhibit significant abnormalities in metabolism and calcium signaling. With regards to metabolism, we and others have shown evidence of increased aerobic glycolysis and evidence of increased utilization of alternate fuel sources (such as fatty acids) in PAH EC. In the realm of calcium signaling, our prior work linked increased activity of the transient receptor potential vanilloid-4 (TRPV4) channel to increased proliferation of MVECs isolated from the Sugen/Hypoxia rat model of PAH (SuHx-MVECs). However, the relationship between metabolic shifts and calcium abnormalities was not clear. Specifically, whether shifts in metabolism were responsible for increasing TRPV4 channel activity in SuHx-MVECs was not known. In this study, using human data, serum samples from SuHx rats, and SuHx-MVECs, we describe the consequences of increased MVEC fatty acid oxidation in PAH. In human samples, we observed an increase in long-chain fatty acid levels that was associated with PAH severity. Next, using SuHx rats and SuHx-MVECs, we observed increased intracellular levels of lipids. We also show that increasing intracellular lipid content increases TRPV4 activity, whereas inhibiting fatty acid oxidation normalizes basal calcium levels in SuHx-MVECs. By exploring the fate of fatty acid-derived carbons, we observed that the metabolite linking increased intracellular lipids to TRPV4 activity was ß-hydroxybutyrate (BOHB), a product of fatty acid oxidation. Finally, we show that BOHB supplementation alone is sufficient to sensitize the TRPV4 channel in rat and mouse MVECs. Returning to humans, we observe a transpulmonary BOHB gradient in human patients with PAH. Thus, we establish a link between fatty acid oxidation, BOHB production, and TRPV4 activity in MVECs in PAH. These data provide new insight into metabolic regulation of calcium signaling in lung MVECs in PAH.NEW & NOTEWORTHY In this paper, we explore the link between metabolism and intracellular calcium levels in microvascular endothelial cells (MVECs) in pulmonary arterial hypertension (PAH). We show that fatty acid oxidation promotes sensitivity of the transient receptor potential vanilloid-4 (TRPV4) calcium channel in MVECs isolated from a rodent model of PAH.


Subject(s)
Antineoplastic Agents , Pulmonary Arterial Hypertension , Animals , Humans , Mice , Rats , Calcium/metabolism , Endothelial Cells/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Fatty Acids/metabolism , Lipids , Lung/metabolism , Pulmonary Arterial Hypertension/metabolism , TRPV Cation Channels/metabolism
11.
Cancer Lett ; 584: 216643, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38246220

ABSTRACT

In the realm of cancer therapeutics and resistance, kinases play a crucial role, particularly in gastric cancer (GC). Our study focused on platinum-based chemotherapy resistance in GC, revealing a significant reduction in homeodomain-interacting protein kinase 3 (HIPK3) expression in platinum-resistant tumors through meticulous analysis of transcriptome datasets. In vitro and in vivo experiments demonstrated that HIPK3 knockdown enhanced tumor proliferation and metastasis, while upregulation had the opposite effect. We identified the myocyte enhancer factor 2C (MEF2C) as a transcriptional regulator of HIPK3 and uncovered HIPK3's role in downregulating the morphogenesis regulator microtubule-associated protein (MAP7) through ubiquitination. Phosphoproteome profiling revealed HIPK3's inhibitory effects on mTOR and Wnt pathways crucial in cell proliferation and movement. A combined treatment strategy involving oxaliplatin, rapamycin, and IWR1-1-endo effectively overcame platinum resistance induced by reduced HIPK3 expression. Monitoring HIPK3 levels could serve as a GC malignancy and platinum resistance indicator, with our proposed treatment strategy offering novel avenues for reversing resistance in gastric cancer.


Subject(s)
Platinum , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Oxaliplatin/pharmacology , Disease Progression , Cell Proliferation , Cell Line, Tumor , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Intracellular Signaling Peptides and Proteins
12.
Biochem Biophys Res Commun ; 696: 149472, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38241809

ABSTRACT

Lysosomal dysfunction and impaired autophagic flux are involved in the pathogenesis of lipotoxicity in the kidney. Here, we investigated the role of transcription factor EB (TFEB), a master regulator of autophagy-lysosomal pathway, in palmitic acid induced renal tubular epithelial cells injury. We examined lipid accumulation, autophagic flux, expression of Ps211-TFEB, and nuclear translocation of TFEB in HK-2 cells overloaded with palmitic acid (PA). By utilizing immunohistochemistry, we detected TFEB expression in renal biopsy tissues from patients with diabetic nephropathy and normal renal tissue adjacent to surgically removed renal carcinoma (controls), as well as kidney tissues from rat fed with high-fat diet (HFD) and low-fat diet (LFD). We found significant lipid accumulation, increased apoptosis, accompanied with elevated Ps211-TFEB, decreased nuclear TFEB, reduced lysosome biogenesis and insufficient autophagy in HK-2 cells treated with PA. Kidney tissues from patients with diabetic nephropathy had lower nuclear and total levels of TFEB than that in control kidney tissues. Level of renal nuclear TFEB in HFD rats was also lower than that in LFD rats. Exogenous overexpression of TFEB increased the nuclear TFEB level in HK-2 cells treated with PA, promoted lysosomal biogenesis, improved autophagic flux, reduced lipid accumulation and apoptosis. Our results collectively indicate that PA is a strong inducer for TFEB phosphorylation modification at ser211 accompanied with lower nuclear translocation of TFEB. Impairment of TFEB-mediated lysosomal biogenesis and function by palmitic acid may lead to insufficient autophagy and promote HK-2 cells injury.


Subject(s)
Diabetic Nephropathies , Palmitic Acid , Rats , Humans , Animals , Palmitic Acid/pharmacology , Palmitic Acid/metabolism , Diabetic Nephropathies/metabolism , Autophagy , Lysosomes/metabolism , Epithelial Cells/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
13.
Br J Anaesth ; 132(2): 334-342, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38044237

ABSTRACT

BACKGROUND: Delayed emergence from general anaesthesia poses a significant perioperative safety hazard. Subanaesthetic doses of ketamine not only deepen anaesthesia but also accelerate recovery from isoflurane anaesthesia; however, the mechanisms underlying this phenomenon remain elusive. Esketamine exhibits a more potent receptor affinity and fewer adverse effects than ketamine and exhibits shorter recovery times after brief periods of anaesthesia. As the paraventricular thalamus (PVT) plays a pivotal role in regulating wakefulness, we studied its role in the emergence process during combined esketamine and isoflurane anaesthesia. METHODS: The righting reflex and cortical electroencephalography were used as measures of consciousness in mice during isoflurane anaesthesia with coadministration of esketamine. The expression of c-Fos was used to determine neuronal activity changes in PVT neurones after esketamine administration. The effect of esketamine combined with isoflurane anaesthesia on PVT glutamatergic (PVTGlu) neuronal activity was monitored by fibre photometry, and chemogenetic technology was used to manipulate PVTGlu neuronal activity. RESULTS: A low dose of esketamine (5 mg kg-1) accelerated emergence from isoflurane general anaesthesia (474 [30] s vs 544 [39] s, P=0.001). Esketamine (5 mg kg-1) increased PVT c-Fos expression (508 [198] vs 258 [87], P=0.009) and enhanced the population activity of PVTGlu neurones (0.03 [1.7]% vs 6.9 [3.4]%, P=0.002) during isoflurane anaesthesia (1.9 [5.7]% vs -5.1 [5.3]%, P=0.016) and emergence (6.1 [6.2]% vs -1.1 [5.0]%, P=0.022). Chemogenetic suppression of PVTGlu neurones abolished the arousal-promoting effects of esketamine (459 [33] s vs 596 [33] s, P<0.001). CONCLUSIONS: Our results suggest that esketamine promotes recovery from isoflurane anaesthesia by activating PVTGlu neurones. This mechanism could explain the rapid arousability exhibited upon treatment with a low dose of esketamine.


Subject(s)
Anesthetics, Inhalation , Isoflurane , Ketamine , Thalamus , Animals , Mice , Anesthesia, General , Anesthetics, Inhalation/pharmacology , Isoflurane/pharmacology , Ketamine/pharmacology , Thalamus/drug effects
14.
Mol Neurobiol ; 61(8): 4976-4991, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38157119

ABSTRACT

Previous studies have shown that the C-C motif chemokine ligand 2 (CCL2) is widely expressed in the nervous system and involved in regulating the development of chronic pain and related anxiety-like behaviors, but its precise mechanism is still unclear. This paper provides an in-depth examination of the involvement of CCL2-CCR2 signaling in the anterior cingulate cortex (ACC) in intraplantar injection of complete Freund's adjuvant (CFA) leading to inflammatory pain and its concomitant anxiety-like behaviors by modulation of glutamatergic N-methyl-D-aspartate receptor (NMDAR). Our findings suggest that local bilateral injection of CCR2 antagonist in the ACC inhibits CFA-induced inflammatory pain and anxiety-like behavior. Meanwhile, the expression of CCR2 and CCL2 was significantly increased in ACC after 14 days of intraplantar injection of CFA, and CCR2 was mainly expressed in excitatory neurons. Whole-cell patch-clamp recordings showed that the CCR2 inhibitor RS504393 reduced the frequency of miniature excitatory postsynaptic currents (mEPSC) in ACC, and CCL2 was involved in the regulation of NMDAR-induced current in ACC neurons in the pathological state. In addition, local injection of the NR2B inhibitor of NMDAR subunits, Ro 25-6981, attenuated the effects of CCL2-induced hyperalgesia and anxiety-like behavior in the ACC. In summary, CCL2 acts on CCR2 in ACC excitatory neurons and participates in the regulation of CFA-induced pain and related anxiety-like behaviors through upregulation of NR2B. CCR2 in the ACC neuron may be a potential target for the treatment of chronic inflammatory pain and pain-related anxiety.


Subject(s)
Anxiety , Chemokine CCL2 , Gyrus Cinguli , Inflammation , N-Methylaspartate , Pain , Receptors, CCR2 , Receptors, N-Methyl-D-Aspartate , Signal Transduction , Animals , Gyrus Cinguli/metabolism , Gyrus Cinguli/drug effects , Inflammation/pathology , Inflammation/metabolism , Male , Anxiety/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Chemokine CCL2/metabolism , Receptors, CCR2/metabolism , Receptors, CCR2/antagonists & inhibitors , Pain/metabolism , Pain/pathology , Signal Transduction/drug effects , Excitatory Postsynaptic Potentials/drug effects , Freund's Adjuvant/toxicity , Mice, Inbred C57BL , Neurons/metabolism , Neurons/drug effects , Behavior, Animal , Hyperalgesia/metabolism , Hyperalgesia/pathology , Spiro Compounds , Benzoxazines
15.
Mol Med Rep ; 28(6)2023 Dec.
Article in English | MEDLINE | ID: mdl-37921051

ABSTRACT

Abnormal activation of microglia and the production of proinflammatory cytokines can lead to chronic neuroinflammation, which is an important pathological characteristic of Parkinson's disease (PD). Neferine is a chemical compound extracted from lotus seed which has previously been reported to exert protective effects on the development of several types of cancer, myocardial injury and hypoxic­ischemic encephalopathy. However, its effect on microglial functions in neuroinflammation remains to be clarified. The present study used network pharmacology and screening in a lipopolysaccharide (LPS) model to demonstrate that neferine suppresses the production of inducible nitric oxide synthase, interleukin­6 and tumor necrosis factor α in LPS­treated BV­2 cells. The working concentration of neferine did not exert cytotoxic effects on BV­2 cells. Mechanistically, neferine attenuated inflammation by inhibiting the phosphorylation and nuclear translocation of the NF­κB p65 subunit. In vivo, neferine protected mice from the inflammatory response in the substantia nigra and inhibited the development of nervous disorders in the 1­methyl­4­phenyl­1,2,3,6­tetrahydropyridine­induced PD model. The present study demonstrated that neferine inhibited LPS­mediated activation of microglia by inhibiting NF­κB signaling. These findings may provide a new reference for the prevention and future treatment of PD.


Subject(s)
Parkinson Disease , Mice , Animals , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Parkinson Disease/pathology , Microglia , NF-kappa B , Neuroinflammatory Diseases , Lipopolysaccharides/pharmacology , Cell Line , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Nitric Oxide
16.
Comput Methods Programs Biomed ; 242: 107807, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37778138

ABSTRACT

BACKGROUND AND OBJECTIVE: Knee osteoarthritis (OA) is a debilitating musculoskeletal disorder that causes functional disability. Automatic knee OA diagnosis has great potential of enabling timely and early intervention, that can potentially reverse the degenerative process of knee OA. Yet, it is a tedious task, concerning the heterogeneity of the disorder. Most of the proposed techniques demonstrated single OA diagnostic task widely based on Kellgren Lawrence (KL) standard, a composite score of only a few imaging features (i.e. osteophytes, joint space narrowing and subchondral bone changes). However, only one key disease pattern was tackled. The KL standard fails to represent disease pattern of individual OA features, particularly osteophytes, joint-space narrowing, and pain intensity that play a fundamental role in OA manifestation. In this study, we aim to develop a multitask model using convolutional neural network (CNN) feature extractors and machine learning classifiers to detect nine important OA features: KL grade, knee osteophytes (both knee, medial fibular: OSFM, medial tibial: OSTM, lateral fibular: OSFL, and lateral tibial: OSTL), joint-space narrowing (medial: JSM, and lateral: JSL), and patient-reported pain intensity from plain radiography. METHODS: We proposed a new feature extraction method by replacing fully-connected layer with global average pooling (GAP) layer. A comparative analysis was conducted to compare the efficacy of 16 different convolutional neural network (CNN) feature extractors and three machine learning classifiers. RESULTS: Experimental results revealed the potential of CNN feature extractors in conducting multitask diagnosis. Optimal model consisted of VGG16-GAP feature extractor and KNN classifier. This model not only outperformed the other tested models, it also outperformed the state-of-art methods with higher balanced accuracy, higher Cohen's kappa, higher F1, and lower mean squared error (MSE) in seven OA features prediction. CONCLUSIONS: The proposed model demonstrates pain prediction on plain radiographs, as well as eight OA-related bony features. Future work should focus on exploring additional potential radiological manifestations of OA and their relation to therapeutic interventions.


Subject(s)
Osteoarthritis, Knee , Osteophyte , Humans , Osteoarthritis, Knee/diagnostic imaging , Osteophyte/diagnostic imaging , Knee Joint , Radiography , Tibia
17.
Huan Jing Ke Xue ; 44(9): 5071-5079, 2023 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-37699825

ABSTRACT

Microplastic pollution in the water environment is becoming increasingly serious, impacting the growth and development of aquatic organisms. There are limited studies on the mechanisms of microplastic effects on biofilm formation. Therefore, in this study, the effects of polystyrene microplastics (PS-MPs) were investigated on the biofilm formation and development of Pseudomonas aeruginosa. Different concentrations and particle sizes of PS-MPs were selected for exposure tests to explore the effects on biofilm biomass, oxidative stress levels, biofilm structure, and population sensing system. The results showed that PS-MPs induced severe oxidative stress and inhibited biofilm formation and development, and the smaller the particle size, the stronger the inhibitory effect was. The inhibition effect was 0.1 µm>0.5 µm≈1 µm>5 µm. PS-MPs caused severe physical damage through contact with bacteria. The thickness of the biofilm was significantly reduced, damaging the structural stability. The bacteria in the biofilm secreted extracellular polymers to resist the stress of PS-MPs. Meanwhile, PS-MPs interfered with the QS system of P. aeruginosa; down-regulated the expression levels of key genes lasI, lasR, rhlI, and rhlR; inhibited the synthesis and secretion of signal molecules and related virulence factors; and ultimately affected the formation and structural stability of biofilms.


Subject(s)
Microplastics , Plastics , Microplastics/toxicity , Pseudomonas aeruginosa , Polystyrenes/toxicity , Biofilms
18.
Science ; 381(6661): 979-984, 2023 09.
Article in English | MEDLINE | ID: mdl-37651513

ABSTRACT

Population size history is essential for studying human evolution. However, ancient population size history during the Pleistocene is notoriously difficult to unravel. In this study, we developed a fast infinitesimal time coalescent process (FitCoal) to circumvent this difficulty and calculated the composite likelihood for present-day human genomic sequences of 3154 individuals. Results showed that human ancestors went through a severe population bottleneck with about 1280 breeding individuals between around 930,000 and 813,000 years ago. The bottleneck lasted for about 117,000 years and brought human ancestors close to extinction. This bottleneck is congruent with a substantial chronological gap in the available African and Eurasian fossil record. Our results provide new insights into our ancestry and suggest a coincident speciation event.


Subject(s)
Evolution, Molecular , Genome, Human , Population Dynamics , Humans , Black People/genetics , Black People/history , Genomics , Fossils , Population Dynamics/history , European People/genetics , European People/history , Asian/genetics , Asian/history
19.
PLoS One ; 18(7): e0288277, 2023.
Article in English | MEDLINE | ID: mdl-37459315

ABSTRACT

In nature and human societies, the effects of homogeneous and heterogeneous characteristics on the evolution of collective behaviors are quite different from each other. By incorporating pair pattern strategies and reference point strategies into an agent-based model, we have investigated the effects of homogeneous and heterogeneous investment strategies and reference points on price movement. In the market flooded with the investors with homogeneous investment strategies or homogeneous reference points, large price fluctuations occur. In the market flooded with the investors with heterogeneous investment strategies or heterogeneous reference points, moderate price fluctuations occur. The coexistence of different kinds of investment strategies can not only refrain from the occurrence of large price fluctuations but also the occurrence of no-trading states. The present model reveals that the coexistence of heterogeneous populations, whether they are the individuals with heterogeneous investment strategies or heterogeneous reference points of stock prices, is an important factor for the stability of the stock market.


Subject(s)
Floods , Investments , Humans
20.
J Am Chem Soc ; 145(18): 10355-10363, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37104621

ABSTRACT

Owing to the inherent instability caused by the low Cu(I)/Cu(0) half-cell reduction potential, Cu(0)-containing copper nanoclusters are quite uncommon in comparison to their Ag and Au congeners. Here, a novel eight-electron superatomic copper nanocluster [Cu31(4-MeO-PhC≡C)21(dppe)3](ClO4)2 (Cu31, dppe = 1,2-bis(diphenylphosphino)ethane) is presented with total structural characterization. The structural determination reveals that Cu31 features an inherent chiral metal core arising from the helical arrangement of two sets of three Cu2 units encircling the icosahedral Cu13 core, which is further shielded by 4-MeO-PhC≡C- and dppe ligands. Cu31 is the first copper nanocluster carrying eight free electrons, which is further corroborated by electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and density functional theory calculations. Interestingly, Cu31 demonstrates the first near-infrared (750-950 nm, NIR-I) window absorption and the second near-infrared (1000-1700 nm, NIR-II) window emission, which is exceptional in the copper nanocluster family and endows it with great potential in biological applications. Of note, the 4-methoxy groups providing close contacts with neighboring clusters are crucial for the cluster formation and crystallization, while 2-methoxyphenylacetylene leads only to copper hydride clusters, Cu6H or Cu32H14. This research not only showcases a new member of copper superatoms but also exemplifies that copper nanoclusters, which are nonluminous in the visible range may emit luminescence in the deep NIR region.

SELECTION OF CITATIONS
SEARCH DETAIL
...