Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 417: 110705, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38640815

ABSTRACT

The effect of a casein hydrolysate (CH) on the fermentation and quality of a naturally-fermented buckwheat sourdough (NFBS) were investigated, through assessing the fermentation characteristics, carbohydrate and protein degradation, texture, and bacterial composition of NFBS. According to the assaying data, CH might both increase the amount of lactic acid bacteria by 2.62 % and shorten the fermentation period by at least 3 h, subsequently leading to enhanced degradation of carbohydrate and protein, accompanied by a softer texture. More importantly, CH increased the relative abundance of lactobacillus in NFBS, making it the dominant bacterial genus and inhibited the growth of spoilage bacteria. In addition, Spearman correlation analysis indicated that the pH value, lactic and acetic acid contents, carbohydrates, protease activity, and these textural indices like hardness, elasticity, and adhesion had a positive/negative correlation with the bacterial composition of NFBS (Spearman correlation coefficient: -0.93-0.95). CH was thus regarded to be helpful to NFBS processing and production mainly by shortening its fermentation time, improving its fermentation performance, causing a finer texture and microstructure, and changing bacterial composition.


Subject(s)
Bread , Caseins , Fagopyrum , Fermentation , Fagopyrum/chemistry , Bread/microbiology , Caseins/metabolism , Food Microbiology , Lactobacillus/metabolism , Lactobacillus/growth & development , Hydrogen-Ion Concentration , Bacteria/metabolism , Bacteria/growth & development , Fermented Foods/microbiology
2.
Food Microbiol ; 94: 103632, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33279064

ABSTRACT

This study researched the action mode of cranberry anthocyanin (CA) against Staphylococcus aureus and the effect of CA on the counts of S. aureus and the quantity of cooked meat during storage. The antibacterial effect was assessed by minimum inhibitory concentration (MIC) and survival populations of S. aureus strains after CA treatments. The changes in intracellular adenosine 5'-triphosphate (ATP) concentration, cell membrane potential, content of bacterial protein and cell morphology were analyzed to reveal possible action mode. Application potentials of CA as antimicrobial agent were assessed during storage of cooked pork and beef. The result showed that the MIC of CA against S. aureus strains was 5 mg/mL. Approximately 8 log CFU/mL of S. aureus strains can be completely inhibited after treatment with 2.0 MIC of CA for 0.5 h. Treatments of CA resulted in lower intracellular ATP and soluble protein levels, damaged membrane structure and leakage of cytoplasmic. Application of CA on cooked pork and beef caused a significant decrease in S. aureus counts and pH values, and color-darkening compared with control samples. These findings demonstrated that CA played an effective antimicrobial against S. aureus and had a potential as natural preservative to inhibit the growth of food pathogens.


Subject(s)
Anthocyanins/pharmacology , Anti-Bacterial Agents/pharmacology , Meat/microbiology , Plant Extracts/pharmacology , Staphylococcus aureus/drug effects , Vaccinium macrocarpon/chemistry , Animals , Cattle , Food Contamination/analysis , Food Preservatives/pharmacology , Food Storage , Microbial Sensitivity Tests , Staphylococcus aureus/growth & development , Swine
3.
Foods ; 9(3)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32204560

ABSTRACT

Amaranthus tricolor has been reported to contain some antimicrobial compounds, such as alkaloids, polyphenols, and terpenoids. However, its effect on Staphylococcus aureus has been less well researched. Therefore, this study was designed to evaluate the antimicrobial activity and possible mechanism of action of the Amaranthus tricolor crude extract (ATCE) against S. aureus and potential application in cooked meat. The antimicrobial activity against S. aureus was assessed by disk diffusion, minimum inhibitory concentration (MIC) determinations, and growth curve. The changes of bacterial membrane potential, intracellular pH (pHin), content of bacterial protein and DNA, and cell morphology were measured to indicate its antimicrobial mechanism of action. The effects of different concentrations of ATCE on bacterial counts, pH, and color of lean cooked pork during 6 d storage were assessed. The results showed that the diameter of inhibition zone (DIZ) and MIC of ATCE against S. aureus were 12.63 ± 0.34 to 12.94 ± 0.43 mm and 80 mg/mL, respectively. The mechanism of action of ATCE against S. aureus was associated with cell membrane depolarization, reduction of pHin, decrease of bacterial protein content, cleavage of cell DNA, and leakage of cytoplasm. Besides, ATCE resulted in a reduction of 1.02 log CFU/g from 3 log CFU/g in S. aureus-inoculated lean cooked pork. The pH values of lean cooked pork treated with ATCE did not show significant changes as the storage time increased, but there was a slight and significant decrease seen with the application of 1 and 2 MIC of ATCE. After treating with ATCE, the color of lean cooked pork showed less lightness (L*), more redness (a∗), similar yellowness (b*), stronger chroma (C*), and weaker hue angle (h*) during 6 days of storage. Therefore, these findings indicate that ATCE has antimicrobial activities against S. aureus and possesses latent energy to become a natural preservative to maintain the quality of lean cooked pork.

SELECTION OF CITATIONS
SEARCH DETAIL
...