Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 273(Pt 1): 132918, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844282

ABSTRACT

Manufacturing biodegradable lignocellulosic films from spent coffee grounds (SCG) as an alternative to commercial plastics is a viable solution to address plastic pollution. Here, the biodegradable lignocellulosic films from SCG were fabricated via a sequential alkaline treatment and ionic liquid-based dissolution process. The alkaline treatment process could swell the cell wall of SCG, change its carbohydrates and lignin contents, and enhance its solubility in ionic liquids. The prepared SCG films with different lignin contents exhibited outstanding UV blocking capability (42.07-99.99 % for UVB and 20.96-99.99 % for UVA) and light scattering properties, good surface hydrophobicity (water contact angle = 63.2°-88.7°), enhanced water vapor barrier property (2.28-6.79 × 10-12 g/m·s·Pa), and good thermal stability. Moreover, the SCG films exhibit excellent mechanical strength (50.10-81.56 MPa, tensile strength) and biodegradability (fully degraded within 30 days when buried in soil) compared to commercial plastic. The SCG films represent a promising alternative that can replace non-biodegradable plastics.

2.
Int J Biol Macromol ; 271(Pt 2): 132529, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38777010

ABSTRACT

The poor UV shielding property of PLA limit it further applications on food packaging. The rare-earth complex Eu(DBM)3phen converts absorbed ultraviolet (UV) light to red light, which inspires the development of new UV shielding materials. However, this complex has low photostability and decomposes easily under UV irradiation. Thus, we prepared a long-lasting rare-earth complex transluminant Eu(DBM)2(BP-2)phen by introducing BP-2 into Eu(DBM)3phen, and blended it with PLA to obtain PLA/Eu(DBM)2(BP-2)phen composite films. The test results showed that the complex could reduce the UV transmittance of PLA films by emitting luminescence and heat. The UV transmittance of the composite film with 0.5 % mass fraction decreased from 87.4 % to 7.7 %, compared to pure PLA films, and remained at 11.6 % after 12 days of UV aging. The film had long-lasting UV shielding performance, good transparency and mechanical properties. Finally, In the storage experiments of flaxseed oil, the P/E25 film effectively retarded the oxidation process of the oil.

3.
Food Chem ; 452: 139573, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38718454

ABSTRACT

Grapes were packaged by different Poly (L-lactic acid)-based packaging films (PLTL-PLEL) and stored at 5 °C for 35 days to investigate the effects of equilibrium modified atmosphere packaging on the quality of "Kyoho" grapes during storage. Changes in physiochemical quality, antioxidant content and senescence of grapes were studied. Furthermore, UPLC-Q-TOF-MS/MS was used to observe and identify key factors influencing the variation of grape anthocyanins under different atmosphere conditions. Alterations in gas components and enzyme activities significantly impacted anthocyanin levels, highlighting oxygen concentration as the primary influence on total anthocyanin levels. The PLTL-PLEL50 packaging resulted in an approximate 5.7% lower weight loss and increased soluble solids by approximately 14.4%, vitamin C, total phenols and flavonoids reaching 60.2 mg/100 g, 8.4 mg/100 g and 7.2 mg/100 g, respectively. This packaging also preserved higher anthocyanin levels, with malvidin-3-glucoside and peonidin-3-glucoside at 0.55 µg/mL and 1.62 µg/mL, respectively, on the 35th day of storage.


Subject(s)
Anthocyanins , Food Packaging , Polyesters , Vitis , Anthocyanins/chemistry , Anthocyanins/analysis , Food Packaging/instrumentation , Vitis/chemistry , Polyesters/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Fruit/chemistry , Antioxidants/chemistry , Tandem Mass Spectrometry
4.
Food Chem ; 449: 139218, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38579656

ABSTRACT

High costs and low performance have constrained the application of bio-based materials in food packaging. Herein, a series of ultra-thin poly(L-lactic acid-iconic acid N-diol) (P(LA-NI)) copolymer films were developed using a "one-step" polycondensation process with integrated toughness, barrier properties, gas selectivity, and quality control features. The massive branched structure and gg conformers in P(LA-NI) act as "internal chain expansion" and "internal plasticization". Meanwhile, P(LA-NI) contains numerous polar groups and unique nanoscale microphase structures to realize excellent CO2, O2 barrier, CO2/O2 selectivity, anti-fogging, and UV shielding functions. The atmosphere within the package spontaneously achieves the desirable low O2 and high CO2 levels when packaging button mushrooms with high respiratory metabolism. Eventually, the shelf life of button mushrooms reached 24 days, >3-fold extended. This PLLA-based film meets "dual carbon" and "food safety" goals and has vast potential for fresh food preservation.


Subject(s)
Carbon Dioxide , Food Packaging , Oxygen , Polyesters , Food Packaging/instrumentation , Polyesters/chemistry , Carbon Dioxide/chemistry , Oxygen/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Permeability
5.
Int J Biol Macromol ; 268(Pt 1): 131746, 2024 May.
Article in English | MEDLINE | ID: mdl-38653425

ABSTRACT

Biodegradable poly(L-lactic acid) (PLLA) has seldom used for dairy packaging due to medium permeability and brittleness. Novel PLLA copolymers, poly (L-lactic acid-co-butylene itaconate-co-glycolic acid) (PLBIGA), were developed by integrating glycolic acid (GA) and poly(butylene itaconate) (PBI) into PLLA's structure using low molecular weight PLLA as a key initiator. Then, packaging materials with better barrier and mechanical properties were obtained by blended PLBIGA with PLLA. Both PLLA/PLBIGA films and polyethylene nylon composite film (PE/NY) were used for stirred yogurt packaging and storage at 4 °C for 25 days. Results revealed that yogurt packed by PLLA/PLBIGA films maintained stabler water-holding capacity, color, and viscosity over the storage period. Moreover, the integrity of the gel structure and the total viable count of lactic acid bacteria in yogurt packaged in PLLA/40-PLBIGA8 were also found to be superior to those in PE/NY packages, highlighting its eco-friendly advantages in dairy packaging.


Subject(s)
Food Packaging , Food Storage , Polyesters , Yogurt , Yogurt/microbiology , Polyesters/chemistry , Food Packaging/methods , Food Storage/methods , Succinates/chemistry , Food Preservation/methods , Glycolates/chemistry , Viscosity , Polymers/chemistry
6.
Foods ; 12(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37959099

ABSTRACT

Chilled pork is frequently contaminated with Pseudomonas fragi and Pseudomonas fluorescens. In this study, the bactericidal efficacy and mechanisms of non-electrolytic slightly acidic hypochlorous water (NE-SAHW) against two strains of these two species were evaluated. The results showed that the antibacterial efficacy of NE-SAHW was positively correlated with the concentration level of NE-SAHW and negatively correlated with the initial populations of the strains. The strains of small populations were completely inhibited when provided with each level of NE-SAHW. The killed cells of P. fragi were 0.94, 1.39, 4.02, and 5.60 log10 CFU/mL, respectively, and of P. fluorescens they were 1.21, 1.52, 4.14, and 5.74 log10 CFU/mL, respectively, when the initial populations of the strains were at high levels (about 7 log10 CFU/mL). Both strains were completely killed within 12 s with the available chlorine concentration (ACC) of 50 mg/L of NE-SAHW. Morphological changes in both cells were observed by using a Scanning Electron Microscope (SEM) and it was discovered that the cell membranes were damaged, which led to the leakage of the intracellular substances, including K+, nucleic acid, and protein. In terms of the Fourier Transform Infrared Spectroscopy (FTIR) results, NE-SAHW destroyed the structures of membrane proteins and cell structure proteins, and influenced the composition of polysaccharides. The bacteria were definitely dead after treatment by NE-SAHW compared to the control according to the results of flow cytometry. These results demonstrated the potential bactericidal property of NE-SAHW when applied to the meat and other food sterilization industries.

7.
Genes (Basel) ; 14(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38002977

ABSTRACT

MicroRNAs (miRNAs) are regarded as important regulators in skeletal muscle development. To reveal the regulatory roles of miRNAs and their target mRNAs underlying the skeletal muscle development of Wuranke sheep, we investigated the miRNA and mRNA expression profiles in the biceps femoris of these sheep at the fetal (3 months of gestation) and 3- and 15-month-old postnatal stages. Consequently, a total of 1195 miRNAs and 24,959 genes were identified. Furthermore, 474, 461, and 54 differentially expressed miRNAs (DEMs) and 6783, 7407, and 78 differentially expressed genes (DEGs) were detected among three comparative groups. Functional analysis demonstrated that the target mRNAs of the DEMs were enriched in multiple pathways related to muscle development. Moreover, the interactions among several predicted miRNA-mRNA pairs (oar-miR-133-HDAC1, oar-miR-1185-5p-MYH1/HADHA/OXCT1, and PC-5p-3703_578-INSR/ACTG1) that potentially affect skeletal muscle development were verified using dual-luciferase reporter assays. In this study, we identified the miRNA and mRNA differences in the skeletal muscle of Wuranke sheep at different developmental stages and revealed that a series of candidate miRNA-mRNA pairs may act as modulators of muscle development. These results will contribute to future studies on the function of miRNAs and their target mRNAs during skeletal muscle development in Wuranke sheep.


Subject(s)
MicroRNAs , Sheep/genetics , Animals , RNA, Messenger/genetics , RNA, Messenger/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Profiling , Muscle, Skeletal/metabolism , Muscle Development/genetics
8.
Foods ; 12(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37761079

ABSTRACT

Allium mongolicum Regel (A. mongolicum) is a healthy edible plant but highly perishable with a short shelf life of 1-2 d. Modified atmosphere packaging (MAP) could inhibit the postharvest senescence and decay of the vegetables. Thus, the aim of this study was to apply MAP with different gas permeabilities to the storage of A. mongolicum and evaluate its effects on maintaining microbial communities and the postharvest quality of A. mongolicum. The results showed that polypropylene/poly(butylene adipate-co-terephthalate) (PP/PBAT, abbreviated as PAT) MAP was suitable for the storage of A. mongolicum by establishing an optimal atmosphere of 0.5-0.6% O2 and 6.2-7.1% CO2 in the bag. It could delay the postharvest senescence of A. mongolicum and maintain its quality by slowing down its respiration rate and weight loss, reducing cell membrane permeability and lipid peroxidation, maintaining the cell wall, and reducing infection and the growth of microorganisms. However, A. mongolicum in HPT was more perishable than that in PAT during storage. Pseudomonas was found to be the main spoilage bacteria, and they could also be effectively inhibited by PAT-MAP. The next-generation sequencing results also showed the growth of Escherichia-Shigella, Clostridium sensu stricto 1, Streptococcus, Aureobasidium, Didymella, and Fusarium, responsible for A. mongolicum decay or human disease, was well inhibited by PAT-MAP. The results suggested that PAT-MAP could be used to maintain microbial diversity and the postharvest quality of A. mongolicum under cold storage conditions. It provided a feasible solution for the preservation, food quality, and safety control of A. mongolicum.

9.
Int J Biol Macromol ; 251: 126335, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37582432

ABSTRACT

The irreconcilable paradox between barrier performance and ductility is a "stumbling block" restricting the development of poly(L-lactic acid) (PLLA) films in the packaging industry. In this work, we reported the fabrication of an ultra-thin PLLA-based film with barrier properties and ductility by adjusting the polarity and conformational behavior of the polymer chains. Firstly, a novel unsaturated poly(L-lactic acid-co-butyrate itaconate) P(LA-BI) copolymer containing CC double bonds was synthesized using melt polycondensation. The results reveal that the addition of 60 % of P(LA-BI) enables PLLA film to achieve an elongation at a break of 83.6 % due to P(LA-BI) containing partially branched structures, which resulted in the polymer chains being arranged more in a high-energy gg conformer. Meanwhile, because of the large number of CO polar groups in P(LA-BI), PLLA/P(LA-BI)60 film show CO2 and O2 permeability coefficients (CDP and OP) of 1.8 and 0.45 × 10-8 g·m·m-2·h-1·Pa-1 respectively, which means that it has excellent gas barrier properties. Moreover, PLLA/P(LA-BI)60 film shows a 33.3 % increase in CO2/O2 ratio and an excellent ultraviolet (UV) barrier performance compared to neat PLLA. Preservation results suggested that the CO2 and O2 levels within the package could be regulated by varying the amount of P(LA-BI) added. Among them, PLLA/P(LA-BI)40 film generated a more desirable CO2 and O2 atmosphere for cherry tomatoes preservation, which was reflected by the delaying of senescence, discoloration, and decay, inhibition of oxidative cell damage through reduced malondialdehyde production, and maintenance of nutritional and flavor substances in cherry tomatoes. This PLLA-based film offers the advantages of operational simplicity, environmental friendliness, and inexpensive cost, making it great promising for food preservation and other applications requiring barrier properties and ductility.

10.
Int J Biol Macromol ; 253(Pt 1): 126216, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37572816

ABSTRACT

The effect of poly(L-lactic acid)/poly(ethylene glycol)-poly(L-lactic acid) block film on preservation of Chinese winter jujube (Ziziphus Jujuba Mill.cv.Dongzao) was investigated. Eight arm poly(ethylene glycol)-poly(L-lactic acid) block copolymer (8-PEG/PLLA) and net structure 8-PEG/PLLA (NET-PEL) were successfully synthetized by ring-opening polymerization, and different percentages (5, 10, and 20 %) of them were blended with PLLA to prepared blends films. Mechanical properties, modulated different scanning calorimetry (MDSC), gas and water vapor permeability results showed that 8-PEG/PLLA and NET-PEL block copolymer greatly increased the toughness of blend films, could be decrease PLLA segment glass transition temperature (Tg)from 59.5 °C to 41.6-46.7 °C and cold crystallization temperature(Tcc)from 89.4 °C to 73.5-77.7 °C, and increased the oxygen (O2), carbon dioxide (CO2), and water vapor transmission rate. The an appropriate gas concentration [O2 (2.56-3.51 %), CO2 (5.05-5.56 %)] was created inside the PLLA/NET-PEL20% (NEPEL20)group, which could restrain increase of total soluble solids (TSS), malonaldehyde content. The firmness, color luminosity (L*), total phenols, and ascorbic acid were maintained at higher level,and kept its commercial value after 40 days of storage. The present data indicated that treating post-harvest winter jujubes with NEPEL20 MAP packaging was an effective method for preservation of postharvest winter jujube.


Subject(s)
Ziziphus , Carbon Dioxide , Polyethylene Glycols/chemistry , Polymers/chemistry , Steam , Ziziphus/chemistry
11.
Foods ; 12(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37107362

ABSTRACT

To verify whether a low-frequency electromagnetic field (LFE field) can help reduce structural damage during the freeze-thaw process and maintain shelf life, Mongolian cheese was frozen at -10, -20, and -30 °C, then thawed at microwave or room temperature. Results showed that LFE field-assisted frozen treatment could reduce ice crystal size and protect the protein matrix structure of cheese. Frozen-thawed cheese retained 96.5% of its hardness and showed no significant difference from the fresh one in elasticity, cohesion, and chewiness. Frozen cheese showed similar but slower ripening behavior during storage, suggesting a potential application of the LFE field in the frozen storage of high-protein foods.

12.
J Food Sci ; 88(4): 1640-1653, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36916069

ABSTRACT

PLDx L copolymers were synthesized from physically stable rigid poly(l-lactic acid) (PLLA) and a few different molecular weights of polydimethylsiloxane (PDMS) to increase the O2 and CO2 permeabilities of PLLA films and make them acceptable for packaging highly respirable products. The effect of PDMS on the morphology, mechanical properties, and gas permeability of PLDx L was investigated. Copolymers showed approximately 10 times the fracture strain and 1.7 times the CO2 and O2 permeabilities of neat PLLA. Additionally, PLDx L maintained an increased CO2 /O2 perm-selectivity consistent between 5 and 40°C. Passive modified atmosphere packaging of Brassica chinensis L was developed to assess the membrane's impact on headspace gas inside the package. The results showed that poly(amide)/poly(ethylene) packaging with 48 cm2 PLD1.8 L membrane as a breathing window can provide 50 g B. chinensis L. with a healthy atmosphere of 3%-8% O2 and 5%-8% CO2 between 6 and 22 days. Vegetables packaged in PLD1.8 L had the lower respiration rate, lower nitrite contents, and less proliferation of microorganisms. Moreover, a suitable atmosphere kept vegetables with higher ascorbic acid and a good appearance after more than 2 weeks of storage at 5°C. PRACTICAL APPLICATION: The permeability of the PLLA-based membrane can be adjusted for the breathable window membrane of sealed fresh products. In the future, several types of film could be developed to match the respiratory and metabolic characteristics of different kinds of products. Such PLLA-based specialized membranes can refine the fresh-keeping function and be more attractive to the customer.


Subject(s)
Brassica , Food Packaging/methods , Carbon Dioxide , Food Preservation/methods , Polymers , Vegetables
13.
Foods ; 12(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36766115

ABSTRACT

Proper packaging can extend the shelf life and maintain the quality of mushrooms during storage. The purpose of this study is to investigate the preservation of Agaricus bisporus using copolymer-modified poly (L-lactide-co-butylene fumarate) and poly (L-lactide-co-glycolic acid) (PLBF and PLGA) packaging. Shelf life and quality were evaluated over 15 days of storage of Agaricus bisporus at 4 ± 1 °C and 90% relative humidity, including weight loss, browning index (BI), total phenolics (TP), ascorbic acid (AA), malondialdehyde content (MDA), electrolyte leakage rate (EC), and superoxide dismutase (SOD) and catalase (CAT). The results showed that mushrooms packaged in PLBF films exhibited better retention in BI, TP, and AA than those with PLLA, PLGA, or polyethylene (PE) films. They can reduce the rate of weight loss, EC, and MDA, which in turn increases the activity of SOD and CAT. PLBF and PLGA have substantially improved flexibility in comparison with PLLA. They also significantly reduced oxygen (O2) and carbon dioxide (CO2) permeability and changed the gas permeability ratio. These positive effects resulted in the effective restriction of O2 and CO2 in these packages, extending the post-harvest storage period of white mushrooms.

14.
Int J Biol Macromol ; 230: 123198, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36623625

ABSTRACT

Chilled meat is subject to deterioration by various factors during storage and distribution. Therefore, it is very important to monitor the quality of meat in real time. This study aims at preparing a natural, low-cost indicating microsphere to visualize the freshness of meat by the combination of sodium alginate (SA) and chitosan with 0-10 wt% anthocyanins derived from chokeberry as a colorant using ionic gelation method. Size-controlled porous SA microspheres with were further constructed by freeze-drying and their physicochemical properties were characterized by SEM, FTIR, DSC, and XRD. Results showed that microspheres with 1 wt% anthocyanin showed good responsiveness to different concentrations of ammonia and were able to effectively identify the freshness of chilled meat by color change. Principal component analysis showed that the color difference of the porous microspheres was highly significantly correlated with pH, TVB-N, total plate count and thiobarbituric acid active substance (p < 0.01), suggesting a visible satisfactory capability of the microspheres to identify the spoilage in pork. Principal component analysis showed that the color difference of the porous microspheres was highly significantly correlated with pH, TVB-N, total plate count and thiobarbituric acid active substance (P < 0.01), suggesting a visible satisfactory capability of the microspheres to identify the spoilage in pork.


Subject(s)
Pork Meat , Red Meat , Animals , Swine , Alginates/chemistry , Colorimetry , Red Meat/analysis , Microspheres , Pork Meat/analysis , Porosity , Anthocyanins/chemistry , Hydrogen-Ion Concentration , Food Packaging
15.
Int J Biol Macromol ; 219: 519-529, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-35940435

ABSTRACT

An atmosphere within a package affects the metabolic process of food and the microbial growth of fresh products and has a vital role in preserving food. It depends on the membrane's specific gas permeability and selectivity to generate a desirable atmosphere for storage. In this study, triblock poly(l-lactic acid­d-ɛ-caprolactone) (PLDC) copolymers and three-arm poly(l-lactic acid-g-ɛ-caprolactone) (PLGC) star copolymers were synthesized, in which a microphase-separated morphology of sea-island structure was established in PLGC membrane as a gas "fast permeation channel" for regulating CO2 and O2 permeability and CO2/O2 selectivity. AFM observation revealed different well-defined micro phase-separated structures of PLGC with size ranges of 200- 300 nm. Comparing PLGC membrane with PLLA, CO2 and O2 transmission rates increased by 416.9 % and 132.7 %, while H2O transport rates increased by 245.6 %. Mechanical testing shows that the PLGC membrane exhibits 40.8-fold elongation at break compared to PLLA, showing excellent flexibility. Moreover, okra's equilibrium-modified atmosphere packaging was designed based on a theoretically derived model. Preservation results suggested that the PLGC packaging membrane could generate an ideal high 8.7- 9.2 % CO2 and low 2.3- 2.7 % O2 atmosphere for okra preservation, delaying the discoloring and rotting of okra.


Subject(s)
Abelmoschus , Food Packaging , Atmosphere , Caproates , Carbon Dioxide , Food Microbiology , Food Packaging/methods , Food Preservation/methods , Lactic Acid/chemistry , Lactones , Oxygen , Polyesters
16.
J Food Sci Technol ; 59(1): 144-156, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35068559

ABSTRACT

Blend films with poly(ε-caprolactone)(PCL) and poly(propylene carbonate)(PPC)with thickness of approximately 40 µm and 60 µm, respectively, were prepared using a uniaxial-stretching extrusion process to modify the property of PCL. PCL/PPC blend films with better comprehensive properties with thickness about 60 µm were used for equilibrium-modified atmosphere packaging of button mushrooms at 5 °C. The gas barrier property together with water vapor permeability were evaluated as well as its effects on the shelf life button mushrooms. The results showed that the PCL/PPC20 and PCL/PPC50 blend films have suitable gas barrier property and water vapor permeability, which was helpful to generate an appropriate storage environment and more importantly no condensation occurred in these two packages. The lower weight loss of button mushrooms was observed for PCL/PPC20 and PCL/PPC50 blend films 4.43 and 4.46, respectively. The PCL/PPC blend films was more effective in decreasing the activity of PPO and preserving the color of the button mushrooms. The over market acceptability of button mushrooms packaged in PCL/PPC blend films still maintained good and within the limit of marketability after 17 days of storage.

17.
Food Sci Nutr ; 7(6): 1946-1956, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31289642

ABSTRACT

A uniaxial-stretched poly(ε-caprolactone)/poly(propylene carbonate; PCL/PPC) composite film was prepared using a twin-screw extruder, and its utility as an equilibrium-modified atmosphere packaging (EMAP) film extending the shelf life of garland chrysanthemums stored at 2~4°C was explored. The oxygen, carbon dioxide, and water vapor penetration properties, mechanical properties, and gas permselectivity of PCL/PPC film used to package garland chrysanthemums were determined and compared to those of controlled low-density polyethylene (LDPE) and PCL films. Physicochemical properties such as package headspace gas composition, weight loss, leaf color, total chlorophyll content, ascorbic acid content, lipid peroxidation extent, and the sensory traits of garland chrysanthemums were investigated over a storage period of 14 days to compare the preservative effects of the various packages. PPC blending decreased the PCL gas and water vapor permeability and slightly increased the CO 2 permselectivity. These effects on gas and water vapor permeability, combined with the effects on gas permselectivity, enhanced preservation of packed garland chrysanthemums. Furthermore, an O2 inner atmosphere level of 2%~5%, and a CO 2 concentration not greater than 8%, was established by the PCL/PPC film in the absence of condensation. The results thus suggest that biodegradable film can be used as an EMAP film to better maintain the quality of freshly harvested garland chrysanthemums and to afford a longer shelf life during cold storage compared to LDPE film. Sensory evaluation indicated that the garland chrysanthemums were market-acceptable after 14 days of storage; LDPE-packed chrysanthemums were acceptable only up to 8 days of storage. The film thus improved storage life compared to that afforded by LDPE.

18.
J Food Sci ; 82(1): 97-107, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27886655

ABSTRACT

A layer of SiOx was deposited on the surface of poly(L-lactic acid) (PLLA) film to fabricate a PLLA/SiOx layered film, by plasma-enhanced chemical vapor deposition (PECVD) process. PLLA/SiOx film showed Young's modulus and tensile strength increased by 119.2% and 91.6%, respectively, over those of neat PLLA film. At 5 °C, the oxygen (O2 ) and carbon dioxide (CO2 ) permeability of PLLA/SiOx film decreased by 78.7% and 71.7%, respectively, and the CO2 /O2 permselectivity increased by 32.5%, compared to that of the neat PLLA film. When the PLLA/SiOx film was applied to the equilibrium-modified atmosphere packaging of chilled meat, the gas composition in packaging reached a dynamic equilibrium with 6% to 11% CO2 and 8% to 13% O2 . Combined with tea polyphenol pads, which effectively inhibited the microbial growth, the desirable color of meat was maintained and an extended shelf life of 52 d was achieved for the chilled meat.


Subject(s)
Atmosphere , Food Packaging/methods , Food Preservation/methods , Lactic Acid/chemistry , Meat , Polymers , Silicon Compounds/chemistry , Animals , Carbon Dioxide , Cold Temperature , Humans , Oxygen , Permeability , Silicon , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...