Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Small ; : e2400638, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804126

ABSTRACT

The lithium deposited via the complex electrochemical heterogeneous lithium deposition reaction (LDR) process on a lithium foil-based anode (LFA) forms a high-aspect-ratio shape whenever the reaction kinetics reach its limit, threatening battery safety. Thereby, a research strategy that boosts the LDR kinetics is needed to construct a high-power and safe lithium metal anode. In this study, the kinetic limitations of the LDR process on LFA are elucidated through operando and ex situ observations using in-depth electrochemical analyses. In addition, ultra-thin (≈0.5 µm) and high modulus (≥19 GPa) double-walled carbon nanotube (DWNT) membranes with different surface properties are designed to catalyze high-safety LDRs. The oxygen-functionalized DWNT membranes introduced on the LFA top surface simultaneously induce multitudinous lithium nuclei, leading to film-like lithium deposition even at a high current density of 20 mA cm-2. More importantly, the layer-by-layer assembly of the oxygen-functionalized and pristine DWNT membranes results in different surface energies between the top and bottom surfaces, enabling selective surface LDRs underneath the high-modulus bilayer membranes. The protective LDR on the bilayer-covered LFA guarantees an invulnerable cycling process in large-area pouch cells at high current densities for more than 1000 cycles, demonstrating the practicability of LFA in a conventional liquid electrolyte system.

2.
Adv Mater ; 35(12): e2209128, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36625665

ABSTRACT

The galvanostatic lithiation/sodiation voltage profiles of hard carbon anodes are simple, with a sloping drop followed by a plateau. However, a precise understanding of the corresponding redox sites and storage mechanisms is still elusive, which hinders further development in commercial applications. Here, a comprehensive comparison of the lithium- and sodium-ion storage behaviors of hard carbon is conducted, yielding the following key findings: 1) the sloping voltage section is presented by the lithium-ion intercalation in the graphitic lattices of hard carbons, whereas it mainly arises from the chemisorption of sodium ions on their inner surfaces constituting closed pores, even if the graphitic lattices are unoccupied; 2) the redox sites for the plateau capacities are the same as those for the closed pores regardless of the alkali ions; 3) the sodiation plateau capacities are mostly determined by the volume of the available closed pore, whereas the lithiation plateau capacities are primarily affected by the intercalation propensity; and 4) the intercalation preference and the plateau capacity have an inverse correlation. These findings from extensive characterizations and theoretical investigations provide a relatively clear elucidation of the electrochemical footprint of hard carbon anodes in relation to the redox mechanisms and storage sites for lithium and sodium ions, thereby providing a more rational design strategy for constructing better hard carbon anodes.

3.
Adv Sci (Weinh) ; 9(6): e2104145, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34939362

ABSTRACT

Despite the development of multidimensional state-of-the-art electrode materials for constructing better lithium metal anodes (LMAs), the key factors influencing the electrochemical performance of LMAs are still poorly understood. Herein, it is demonstrated that the local lithium ion concentration at the interface between the electrode and electrolyte exerts significant influence on the electrochemical performance of LMAs. The local ion concentration is multiplied by introducing pseudocapacitive nanocarbons (PNCs) containing numerous heteroatoms, because PNCs can store large numbers of lithium ions in a pseudocapacitive manner, and promote the formation of an electrochemical double layer. The high interfacial lithium ion concentration induces the formation of lithium-rich inorganic solid-electrolyte-interface layers with high ionic conductivities, and facilitates sustainable and stable supplies of lithium ion charge carriers on the overall active surfaces of the PNCs. Accordingly, the PNC-induced LMA exhibits high Coulombic efficiencies, high rate capabilities, and stable cycling performance.

4.
Adv Mater ; 33(10): e2004902, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33533125

ABSTRACT

The production of rechargeable batteries is rapidly expanding, and there are going to be new challenges in the near future about how the potential environmental impact caused by the disposal of the large volume of the used batteries can be minimized. Herein, a novel strategy is proposed to address these concerns by applying biodegradable device technology. An eco-friendly and biodegradable sodium-ion secondary battery (SIB) is developed through extensive material screening followed by the synthesis of biodegradable electrodes and their seamless assembly with an unconventional biodegradable separator, electrolyte, and package. Each battery component decomposes in nature into non-toxic compounds or elements via hydrolysis and/or fungal degradation, with all of the biodegradation products naturally abundant and eco-friendly. Detailed biodegradation mechanisms and toxicity influence of each component on living organisms are determined. In addition, this new SIB delivers performance comparable to that of conventional non-degradable SIBs. The strategy and findings suggest a novel eco-friendly biodegradable paradigm for large-scale rechargeable battery systems.

5.
Small ; 16(39): e2003918, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32870602

ABSTRACT

Despite the recent attention for Li metal anode (LMA) with high theoretical specific capacity of ≈3860 mA h g-1 , it suffers from not enough practical energy densities and safety concerns originating from the excessive metal load, which is essential to compensate for the loss of Li sources resulting from their poor coulombic efficiencies (CEs). Therefore, the development of high-performance LMA is needed to realize anode-minimized Li metal batteries (LMBs). In this study, high-performance LMAs are produced by introducing a hierarchically nanoporous assembly (HNA) composed of functionalized onion-like graphitic carbon building blocks, several nanometers in diameter, as a catalytic scaffold for Li-metal storage. The HNA-based electrodes lead to a high Li ion concentration in the nanoporous structure, showing a high CE of ≈99.1%, high rate capability of 12 mA cm-2 , and a stable cycling behavior of more than 750 cycles. In addition, anode-minimized LMBs are achieved using a HNA that has limited Li content (≈0.13 mg cm-2 ), corresponding to 6.5% of the cathode material (commercial NCM622 (≈2 mg cm-2 )). The LMBs demonstrate a feasible electrochemical performance with high energy and power densities of ≈510 Wh kgelectrode -1 and ≈2760 W kgelectrode -1 , respectively, for more than 100 cycles.

6.
Adv Mater ; 32(51): e2002193, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32970326

ABSTRACT

Although the lithium-metal anode (LMA) can deliver a high theoretical capacity of ≈3860 mAh g-1 at a low redox potential of -3.040 V (vs the standard hydrogen electrode), its application in rechargeable batteries is hindered by the poor Coulombic efficiency and safety issues caused by dendritic metal growth. Consequently, careful electrode design, electrolyte engineering, solid-electrolyte interface control, protective layer introduction, and other strategies are suggested as possible solutions. In particular, one should note the great potential of 3D-structured electrode materials, which feature high active specific surface areas and stereoscopic structures with multitudinous lithiophilic sites and can therefore facilitate rapid Li-ion flux and metal nucleation as well as mitigate Li dendrite formation through the kinetic control of metal deposition even at high local current densities. This progress report reviews the design of 3D-structured electrode materials for LMA according to their categories, namely 1) metal-based materials, 2) carbon-based materials, and 3) their hybrids, and allows the results obtained under different experimental conditions to be seen at a single glance, thus being helpful for researchers working in related fields.

7.
Small ; 16(35): e2001053, 2020 09.
Article in English | MEDLINE | ID: mdl-32761802

ABSTRACT

A comprehensive study is conducted on hard carbon (HC) series samples by tuning the graphitic local microstructures systematically as an anode for SIBs in both carbonate- (CBE) and glyme-based electrolytes (GBE). The results reveal more detailed charge storage characters of HCs on the LVP section. 1) The LVP capacity is closely related to the prismatic surface area to the basal plane as well as the bulk density, regardless of electrolyte systems. 2) The glyme-sodium ion complex can facilitate sodium ion delivery into the internal closed pores of the HCs along with not well-ordered graphitic structures. 3) The glyme-mediated sodium ion-storage behavior causes significant decreases in both surface film resistance and charge transfer resistance, leading to enhanced rate capability. 4) The LVP originates from the formation of pseudo-metallic sodium nanoclusters, which are the same in a CBE and GBE. These results provide insight into the sodium ion-storage behaviors of HCs, particularly on the interrelationship between graphitic local microstructures and electrolyte systems. In addition, a high-performance HC anode with a plateau capacity of ≈300 mA h g-1 is designed based on the information, and its workability is demonstrated in a full-cell SIB device.

8.
Sci Rep ; 10(1): 5817, 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32242072

ABSTRACT

The non-aqueous asymmetric lithium ion hybrid capacitor (LIHC) is a tactical energy storage device composed of a faradic and non-faradic electrode pair, which aims to achieve both high energy and great power densities. On the other hand, the different types of electrode combinations cause severe imbalances in energy and power capabilities, leading to poor electrochemical performance. Herein, waste pinecone-derived hierarchically porous pyropolymers (WP-HPPs) were fabricated as a surface-driven pseudocapacitive electrode, which has the advantages of both faradic and non-faradic electrodes. The unique materials properties of WP-HPPs possessing high effective surface areas and hierarchically open nanopores led to high specific capacities of ~412 mA h g-1 and considerable rate/cycling performance as a cathode for LIHCs. In particular, nanometer-scale pores, approximately 3 nm in size, plays a key role in the pseudocapacitive charge storage behaviors because open nanopores can transport solvated Li-ions easily into the inside of complex carbon structures and a large specific surface area can be provided by the effective active surface for charge storage. In addition, WP-HPP-based asymmetric LIHCs assembled with a pseudocapacitive counterpart demonstrated feasible electrochemical performance, such as maximum specific energy and specific power of ~340 Wh kg-1 and ~11,000 W kg-1, respectively, with significant cycling stability.

9.
Adv Mater ; 32(4): e1904411, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31736158

ABSTRACT

Calcium-ion batteries (CIBs) are considered to be promising next-generation energy storage systems because of the natural abundance of calcium and the multivalent calcium ions with low redox potential close to that of lithium. However, the practical realization of high-energy and high-power CIBs is elusive owing to the lack of suitable electrodes and the sluggish diffusion of calcium ions in most intercalation hosts. Herein, it is demonstrated that calcium-ion intercalation can be remarkably fast and reversible in natural graphite, constituting the first step toward the realization of high-power calcium electrodes. It is shown that a graphite electrode exhibits an exceptionally high rate capability up to 2 A g-1 , delivering ≈75% of the specific capacity at 50 mA g-1 with full calcium intercalation in graphite corresponding to ≈97 mAh g-1 . Moreover, the capacity stably maintains over 200 cycles without notable cycle degradation. It is found that the calcium ions are intercalated into graphite galleries with a staging process. The intercalation mechanisms of the "calciated" graphite are elucidated using a suite of techniques including synchrotron in situ X-ray diffraction, nuclear magnetic resonance, and first-principles calculations. The versatile intercalation chemistry of graphite observed here is expected to spur the development of high-power CIBs.

10.
ACS Appl Mater Interfaces ; 11(42): 38754-38761, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31566363

ABSTRACT

The high volumetric energy density of rechargeable Mg batteries (RMBs) gives them a competitive advantage over current Li ion batteries, which originates from the high volumetric capacity (∼3833 mA h cm-3) of bivalent Mg metal anodes (MMAs). On the other hand, despite their importance, there are few reports on research strategies to improve the electrochemical performance of MMAs. This paper reports that catalytic carbon nanosubstrates rather than metal-based substrates, such as Mo, Cu, and stainless steel, are essential in MMAs to improve the electrochemical performance of RMBs. In particular, three-dimensional macroporous graphitic carbon nanosubstrates (GC-NSs) with high electrical conductivities can accommodate Mg metal with significantly higher rate capabilities and Coulombic efficiencies than metal substrates, resulting in a more stable and longer-term cycling performance over 1000 cycles. In addition, while metal-based substrates suffered from undesirable Mg peeling-off, homogeneous Mg metal deposition is well-guided in GC-NSs owing to the better affinity of the Mg2+ ion. These results are supported by density functional theory calculations and ex-situ characterization.

11.
Materials (Basel) ; 12(17)2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31454972

ABSTRACT

Nanoporous carbon, including redox-active functional groups, can be a promising active electrode material (AEM) as a positive electrode for lithium-ion batteries owing to its high electrochemical performance originating from the host-free surface-driven charge storage process. This study examined the effects of the nanopore size on the pseudocapacitance of the nanoporous carbon materials using nanopore-engineered carbon-based AEMs (NE-C-AEMs). The pseudocapacitance of NE-C-AEMs was intensified, when the pore diameter was ≥2 nm in a voltage range of 1.0~4.8 V vs Li+/Li under the conventional carbonate-based electrolyte system, showing a high specific capacity of ~485 mA·h·g-1. In addition, the NE-C-AEMs exhibited high rate capabilities at current ranges from 0.2 to 4.0 A·g-1 as well as stable cycling behavior for more than 300 cycles. The high electrochemical performance of NE-C-AEMs was demonstrated by full-cell tests with a graphite nanosheet anode, where a high specific energy and power of ~345 Wh·kg-1 and ~6100 W·Kg-1, respectively, were achieved.

12.
Small ; 15(37): e1901274, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31318158

ABSTRACT

Anode-free sodium metal batteries (AF-SMBs) can deliver high energy and enormous power, but their cycle lives are still insufficient for them to be practical as a power source in modern electronic devices and/or grid systems. In this study, a nanohybrid template based on high aspect-ratio silver nanofibers and nitrogen-rich carbon thin layers as a core-shell structure is designed to improve the Coulombic efficiency (CE) and cycling performance of AF-SMBs. The catalytic nanohybrid templates dramatically reduce the voltage overshooting caused by metal nucleation to one-fifth that of a bare Al foil electrode (≈6 mV vs ≈30 mV), and high average CE values of >99% are achieved over a wide range of current rates from 0.2 to 8 mA cm-2 . Moreover, exceptionally long cycle lives for more than 1600 cycles and an additional 1500 cycles are achieved with a highly stable CE of >99.9%. These results show that AF-SMBs are feasible with the nanohybrid electrode system.

13.
ACS Appl Mater Interfaces ; 11(13): 12401-12407, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30726056

ABSTRACT

We report a pyroprotein seed layer (PSL, ∼100 nm in thickness)-coated Cu foil electrode (PSL-Cu) demonstrating highly reversible Na metal storage behavior with a mean Coulombic efficiency (CE) of ∼99.96% over 300 cycles in a glyme-based electrolyte. Via a synergistic effect with the electrolyte, the carbonaceous thin film containing numerous nucleophilic active sites guides the homogeneous Na metal deposition/stripping process with the formation of numerous catalytic seeds, resulting in remarkably stable cycling and a low Na metal nucleation overpotential of ∼10 mV. In addition, the CE deviation values of the PSL-Cu electrode were ∼0.43% in several cell tests, demonstrating its reliable cycling behavior with low cell-to-cell variation. The practicality of PSL-Cu was further demonstrated via full-cell experiments with a polyanion cathode, in which it achieved a high specific power density and energy density of 3,800 W kg-1 and ∼402 W h kg-1, respectively. This work provides a simple process for the fabrication of a Na metal anode.


Subject(s)
Fibroins/chemistry , Membranes, Artificial , Sodium/chemistry , Catalysis , Electrodes
14.
Small ; 14(17): e1703043, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29611281

ABSTRACT

Na-ion cointercalation in the graphite host structure in a glyme-based electrolyte represents a new possibility for using carbon-based materials (CMs) as anodes for Na-ion storage. However, local microstructures and nanoscale morphological features in CMs affect their electrochemical performances; they require intensive studies to achieve high levels of Na-ion storage performances. Here, pyrolytic carbon nanosheets (PCNs) composed of multitudinous graphitic nanocrystals are prepared from renewable bioresources by heating. In particular, PCN-2800 prepared by heating at 2800 °C has a distinctive sp2 carbon bonding nature, crystalline domain size of ≈44.2 Å, and high electrical conductivity of ≈320 S cm-1 , presenting significantly high rate capability at 600 C (60 A g-1 ) and stable cycling behaviors over 40 000 cycles as an anode for Na-ion storage. The results of this study show the unusual graphitization behaviors of a char-type carbon precursor and exceptionally high rate and cycling performances of the resulting graphitic material, PCN-2800, even surpassing those of supercapacitors.

15.
Nanoscale Res Lett ; 13(1): 36, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29396670

ABSTRACT

The macro/microstructures of carbon-based electrode materials for supercapacitor applications play a key role in their electrochemical performance. In this study, hierarchically macroporous graphitic nanowebs (HM-GNWs) were prepared from bacterial cellulose by high-temperature heating at 2400 °C. The HM-GNWs were composed of well-developed graphitic nanobuilding blocks with a high aspect ratio, which was entangled as a nanoweb structure. The morphological and microstructural characteristics of the HM-GNWs resulted in remarkable charge storage performance. In particular, the HM-GNWs exhibited very fast charge storage behaviors at scan rates ranging from 5 to 100 V s-1, in which area capacitances ranging from ~ 8.9 to 3.8 mF cm-2 were achieved. In addition, ~ 97% capacitance retention was observed after long-term cycling for more than 1,000,000 cycles.

16.
Nat Commun ; 8(1): 74, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28706182

ABSTRACT

Silks are protein-based natural structured materials with an unusual combination of high strength and elongation. Their unique microstructural features composed of hard ß-sheet crystals aligned within a soft amorphous region lead to the robust properties of silks. Herein we report a large enhancement in the intrinsic properties of silk through the transformation of the basic building blocks into a poly-hexagonal carbon structure by a simple heat treatment with axial stretching. The carbon clusters originating from the ß-sheet retain the preferred orientation along the fibre axis, resulting in a long-range-ordered graphitic structure by increasing heat-treatment temperatures and leading improvements in mechanical properties with a maximum strength and modulus up to ∼2.6 and ∼470 GPa, respectively, almost four and thirty times surpassing those of raw silk. Moreover, the formation of sp 2 carbon configurations induce a significant change in the electrical properties (e.g. an electrical conductivity up to 4.37 × 103 S cm-1).The mechanical properties of silk are determined by tight stacks of sheet-like peptide crystals distributed in amorphous regions. Here, the authors heat and stretch silk fibres to align these crystal into a long range ordered carbon structure and dramatically enhance the silk strength.


Subject(s)
Hot Temperature , Silk/chemistry , Tensile Strength , Stress, Mechanical
17.
Small ; 13(30)2017 08.
Article in English | MEDLINE | ID: mdl-28605126

ABSTRACT

Nanohybrid anode materials for Na-ion batteries (NIBs) based on conversion and/or alloying reactions can provide significantly improved energy and power characteristics, while suffering from low Coulombic efficiency and unfavorable voltage properties. An NIB paper-type nanohybrid anode (PNA) based on tin sulfide nanoparticles and acid-treated multiwalled carbon nanotubes is reported. In 1 m NaPF6 dissolved in diethylene glycol dimethyl ether as an electrolyte, the above PNA shows a high reversible capacity of ≈1200 mAh g-1 and a large voltage plateau corresponding to a capacity of ≈550 mAh g-1 in the low-voltage region of ≈0.1 V versus Na+ /Na, exhibiting high rate capabilities at a current rate of 1 A g-1 and good cycling performance over 250 cycles. In addition, the PNA exhibits a high first Coulombic efficiency of ≈90%, achieving values above 99% during subsequent cycles. Furthermore, the feasibility of PNA usage is demonstrated by full-cell tests with a reported cathode, which results in high specific energy and power values of ≈256 Wh kg-1 and 471 W kg-1 , respectively, with stable cycling.

18.
ACS Appl Mater Interfaces ; 9(3): 2267-2274, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28026165

ABSTRACT

Advanced nanostructured hybrid materials can help us overcome the electrochemical performance limitations of current energy storage devices. In this study, three-dimensional porous carbon nanowebs (3D-CNWs) with numerous included orthorhombic Nb2O5 (T-Nb2O5) nanoparticles were fabricated using a microbe-derived nanostructure. The 3D-CNW/T-Nb2O5 nanocomposites showed an exceptionally stable long-term cycling performance over 70 000 cycles, a high reversible capacity of ∼125 mA h g-1, and fast Li-ion storage kinetics in a coin-type two-electrode system using Li metal. In addition, energy storage devices based on the above nanocomposites achieved a high specific energy of ∼80 W h kg-1 together with a high specific power of ∼5300 W kg-1 and outstanding cycling performance with ∼80% capacitance retention after 35 000 cycles.

19.
Adv Mater ; 29(6)2017 Feb.
Article in English | MEDLINE | ID: mdl-27896864

ABSTRACT

Thermally reducible pyroprotein-based electronic textiles (e-textiles) are fabricated using graphene oxide and a pyroprotein such as cocoon silk and spider web without any chemical agents. The electrical conductivity of the e-textile is 11.63 S cm-1 , which is maintained even in bending, washing, and temperature variation.

20.
ACS Appl Mater Interfaces ; 8(5): 3175-81, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26754183

ABSTRACT

Advanced design of nanostructured functional carbon materials for use in sustainable energy storage systems suffers from complex fabrication procedures and the use of special methods and/or expensive precursors, limiting their practical applications. In this study, nanoporous carbon nanosheets (NP-CNSs) containing numerous redox-active heteroatoms (C/O and C/N ratios of 5.5 and 34.3, respectively) were fabricated from citrus peels by simply heating the peels in the presence of potassium ions. The NP-CNSs had a 2D-like morphology with a high aspect ratio of >100, high specific surface area of 1167 m(2) g(-1), and a large amount of nanopores between 1 and 5 nm. The NP-CNSs also had an electrical conductivity of 2.6 × 10(1) s cm(-1), which is approximately 50 times higher than that of reduced graphene oxide. These unique material properties resulted in superior electrochemical performance with a high specific capacity of 140 mAh g(-1) in the cathodic potential range. In addition, symmetric full-cell devices based on the NP-CNSs showed excellent cyclic performance over 100,000 repetitive cycles.


Subject(s)
Carbon/chemistry , Nanopores , Nanostructures/chemistry , Sodium/chemistry , Citrus/chemistry , Electric Power Supplies , Electrochemistry , Graphite/chemistry , Ions , Lithium/chemistry , Oxidation-Reduction , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...