Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Leuk Lymphoma ; 64(1): 178-187, 2023 01.
Article in English | MEDLINE | ID: mdl-36260485

ABSTRACT

Recent reports discovered that red blood cells (RBCs) could scavenge cell-free mitochondrial DNA (mtDNA), which drives the accelerated erythrophagocytosis and innate immune activation characterized by anemia and inflammatory cytokine production. However, the clinical value of the circulating mtDNA copy number alterations in hematologic malignancies is poorly understood. Our data showed that in comparison to healthy group, the patients group had significantly higher mtDNA and histone H4 levels. Moreover, we observed that RBC-bound mtDNA and histone H4 were negatively correlated with hemoglobin in patients. In addition, cytokines and chemokines levels in patients differed significantly from normal controls (21 higher, 7 lower). Our study suggested that both circulating mtDNA and histone H4 were associated with anemia in hematologic malignancies, which helps to further understand the potential mechanism of anemia development in patients with hematologic malignancies. This information may play a vital role in the specific therapeutic interventions for leukemia in the future.


Subject(s)
Anemia , Hematologic Neoplasms , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/therapeutic use , Histones , Anemia/diagnosis , Anemia/etiology , Hematologic Neoplasms/complications , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/genetics , Mitochondria
2.
Front Cell Dev Biol ; 9: 783456, 2021.
Article in English | MEDLINE | ID: mdl-34901026

ABSTRACT

Skin aging is a physiological issue that is still relatively poorly understood. Studies have demonstrated that the dermal extracellular matrix (ECM) plays important roles in skin aging. However, the roles of the changes in ECM characteristics and the molecules that are secreted to the extracellular space and are involved in the formation of the dermal matrix from birth to old age remain unclear. To explore the way in which the ECM microenvironment supports the functions of skin development across different age groups is also poorly understood, we used a decellularization method and matrisome analysis to compare the composition, expression, and function of the dermal ECM in toddler, teenager, adult, and elderly skin. We found that the collagens, glycoproteins, proteoglycans, and regulatory factors that support skin development and interact with these core ECM proteins were differentially expressed at different ages. ECM expression markers occurring during the process of skin development were identified. In addition, our results elucidated the characteristics of ECM synthesis, response to skin development, and the features of the ECM that support epidermal stem cell growth via the basement membrane during skin aging.

3.
ACS Biomater Sci Eng ; 6(10): 5720-5733, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33320565

ABSTRACT

A biomaterial scaffold is a promising tool employed to drive tissue regeneration. This technology has been successfully applied in human tissue rebuilding, particularly for the skin. Meanwhile, there is still room for further improvement, such as maintaining sufficient functionality of a biomaterial scaffold. Here, we developed a new decellularization method to generate a complete anatomical skin biomatrix scaffold with a preserved extracellular matrix (ECM) architecture. We performed proteomic and bioinformatic analyses of the skin scaffold maps of humans, pigs, and rats and systematically analyzed the interaction between ECM proteins and different cell types in the skin microenvironment. These interactions served to quantify the structure and function of the skin's Matrisome comprising core ECM components and ECM-associated soluble signaling molecules required for the regulation of epidermal development. We primarily found that the properties of the skin ECM were species-specific. For example, the composition and function of the ECM of the human skin were more similar to those of pigs compared with those of rats. However, the skin ECM of the pig was significantly deficient in its enzyme systems and immune regulatory factors compared with that of humans. These findings provide a new understanding of the role of the skin ECM niche as well as an attractive strategy that can apply tissue engineering principles to skin biomatrix scaffold materials, which promises to accelerate and enhance tissue regeneration.


Subject(s)
Extracellular Matrix , Proteomics , Animals , Extracellular Matrix Proteins/genetics , Rats , Skin , Swine , Tissue Engineering
4.
J Gene Med ; 22(11): e3259, 2020 11.
Article in English | MEDLINE | ID: mdl-32776410

ABSTRACT

BACKGROUND: pH-sensitive peptides are a relatively new strategy for conquering the poor endosomal release of cationic polymer-mediated transfection. Modification of antimicrobial peptides by exchanging positively-charged residues with negatively-charged glutamic acid residues (Glu) greatly improves its lytic activity at the endosomal pH, which could improve cationic polymer-mediated transfection. METHODS: In the present study, we investigated the effect of the number of Glu substituted for positively-charged residues on the endosomal escape activity of AR-23 and the ability of mutated AR-23 with respect to enhancing cationic polymer-mediated transfection. Three analogs were synthesized by replacing the positively-charged residues in the AR-23 sequence with Glu one-by-one. RESULTS: The pH-sensitive lysis ability of the peptides, the effect of peptides on the physicochemical characteristics, the intracellular trafficking, the transfection efficiency and the cytotoxicity of the polyplexes were determined. Increased lytic activity of peptides was observed with the increased number of Glu replacement in the AR-23 sequence at acidic pH. The number of Glu substituted for positively-charged residues of AR-23 dramatically affects its lysis ability at neutral pH. Triple-Glu substitution in the AR-23 sequence greatly improved poly(l-lysine)-mediated gene transfection efficiency at the same time as maintaining low cytotoxicity. CONCLUSIONS: The results indicate that replacement of positively-charged residues with sufficient Glu residues may be considered as a method for designing pH-sensitive peptides, which could be applied as potential enhancers for improving cationic polymer-mediated transfection.


Subject(s)
DNA/administration & dosage , Endosomes/drug effects , Genetic Therapy , Hemolysis/drug effects , Neoplasms/therapy , Polylysine/chemistry , Pore Forming Cytotoxic Proteins/pharmacology , Apoptosis , Cell Proliferation , Gene Transfer Techniques , Humans , Hydrogen-Ion Concentration , Neoplasms/genetics , Neoplasms/pathology , Pore Forming Cytotoxic Proteins/chemistry , Tumor Cells, Cultured
5.
Nanomedicine ; 14(8): 2531-2540, 2018 11.
Article in English | MEDLINE | ID: mdl-30193814

ABSTRACT

Hemostats, which are used for immediate intervention during internal hemorrhage in order to reduce resulting mortality and morbidity, are relatively rare. Here, we describe novel intravenous nanoparticles (CPG-NPs-2000) with chitosan succinate (CSS) as cores, polyethylene glycol (PEG-2000) as spacers and a glycine-arginine-glycine-aspartic acid-serine (GRGDS) peptide as targeted, active hemostatic motifs. CPG-NPs-2000 displayed significant hemostatic efficacy, compared to the saline control, CSS nanoparticles, and tranexamic acid in liver trauma rat models. Further studies have demonstrated that CPG-NPs-2000 are effectively cleared from organs and blood, within 2 and 48 h, respectively. In addition, administration of CPG-NPs-2000 does not affect clotting function under normal physiological conditions, indicating their potential safety in vivo. CPG-NPs-2000 exhibit excellent thermal stability, good solubility, and redistribution ability, in addition to being low cost. These characteristics indicate that CPG-NPs-2000 may have strong potential as effective intravenous hemostats for treating severe internal bleeding.


Subject(s)
Chitosan/chemistry , Disease Models, Animal , Hemorrhage/therapy , Hemostatics/therapeutic use , Liver/injuries , Nanoparticles/administration & dosage , Oligopeptides/chemistry , Animals , Female , Hemorrhage/pathology , Liver/drug effects , Male , Mice, Inbred BALB C , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Rats , Rats, Sprague-Dawley
6.
Mol Med Rep ; 17(6): 7487-7496, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29620277

ABSTRACT

In response to DNA damage, proliferating cell nuclear antigen (PCNA) has an important role as a positive regulator and as a scaffold protein associated with DNA damage bypass and repair pathways by serving as a platform for the recruitment of associated components. As demonstrated in the present study, the ubiquitin­like modifier human leukocyte antigen F locus adjacent transcript 10 (FAT10), which binds to PCNA but has not previously been demonstrated to be associated with the DNA damage response (DDR), is induced by ultraviolet/ionizing radiation and VP­16 treatment in HeLa cells. Furthermore, DNA damage enhances FAT10 expression. Immunoprecipitation analysis suggested PCNA is modified by FAT10, and the degradation of FATylated PCNA located in the cytoplasm is regulated by the 26S proteasome, which is also responsible for the upregulation of nuclear foci formation. Furthermore, immunofluorescence experiment suggested FAT10 co­localizes with PCNA in nuclear foci, thus suggesting that FATylation of PCNA may affect DDR via the induction of PCNA degradation in the cytoplasm or nucleus. In addition, immunohistochemistry experiment suggested the expression levels of FAT10 and PCNA are enhanced in HCC tissues compared with healthy liver tissues; however, the expression of FAT10 is suppressed in regenerated liver tissues, which express high levels of PCNA, thus suggesting that the association between FAT10 and PCNA expression is only exhibited in tumor tissues. In conclusion, the results of the present study suggest that FAT10 may be involved in DDR and therefore the progression of tumorigenesis.


Subject(s)
DNA Damage , DNA Repair , Proliferating Cell Nuclear Antigen/metabolism , Ubiquitins/metabolism , Adult , Aged , Animals , Female , Gene Expression , HeLa Cells , Humans , Male , Mice , Middle Aged , Neoplasms/genetics , Neoplasms/metabolism , Protein Processing, Post-Translational , Protein Transport , Ubiquitins/genetics
7.
Blood Transfus ; 14(2): 168-74, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26509826

ABSTRACT

BACKGROUND: Enzymatic conversion of blood group A1B red blood cells (RBC) to group O RBC (ECO) was achieved by combined treatment with α-galactosidase and α-N-acetylgalactosaminidase. The aim of this study was to evaluate the function and safety of these A1B-ECO RBC in vitro. MATERIALS AND METHODS: A 20% packed volume of A1B RBC was treated with enzymes in 250 mM glycine buffer, pH 6.8. The efficiency of the conversion of A and B antigen was evaluated by traditional typing in test tubes, gel column agglutination technology and fluorescence-activated cell sorting (FACS) analysis. The physiological and metabolic parameters of native and ECO RBC were compared, including osmotic fragility, erythrocyte deformation index, levels of 2,3-diphosphoglycerate, ATP, methaemoglobin, free Na(+), and free K(+). The morphology of native and ECO RBC was observed by scanning electron microscopy. Residual α-galactosidase or α-N-acetylgalactosaminidase in A1B-ECO RBC was detected by double-antibody sandwich ELISA method. Manual cross-matching was applied to ensure blood compatibility. RESULTS: The RBC agglutination tests and FACS results showed that A1B RBC were efficiently converted to O RBC. Functional analysis suggested that the conversion process had little impact on the physiological and metabolic parameters of the RBC. The residual amounts of either α-galactosidase or α-N-acetylgalactosaminidase in the A1B-ECO RBC were less than 10 ng/mL of packed RBC. About 18% of group B and 55% of group O sera reacted with the A1B-ECO RBC in a sensitive gel column cross-matching test. DISCUSSION: The conversion process does not appear to affect the morphological, physiological or metabolic parameters of A1B-ECO RBC. However, the A1B-ECO RBC still reacted with some antigens. More research on group O and B sera, which may partly reflect the complexity of group A1 the safety of A1B-ECO RBC is necessary before the application of these RBC in clinical transfusion.


Subject(s)
ABO Blood-Group System/chemistry , Blood Grouping and Crossmatching/methods , Erythrocytes/chemistry , Humans , Male
8.
Tissue Eng Part C Methods ; 21(11): 1197-204, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26140655

ABSTRACT

The α-Gal (Galα1,3-Galß1-4GlcNAc-R) epitope, the major xenoantigen, is the first barrier in a porcine-to-man tissue and organ xenotransplantation. The elimination or reduction of the α-Gal epitopes is therefore an important step for a successful xenotransplantation. The present study is to evaluate the α-Gal elimination in the porcine skin with α-galactosidase treatment, and to assess two methods (immunohistochemistry and inhibition ELISA) that may be used in quality control for quantifying the extent of the α-Gal elimination. Enzymatic cleavage in a single-step process is extremely efficient and affordable at eliminating the α-Gal epitope even in a tissue as dense as the porcine dermis. The cost of enzymatic cleavage is found to be less than US$7 for a 10 × 10 cm piece of porcine skin (0.5 mm thick) or about US$140 for 100 g of 3-dimensional soft tissues. After enzymatic cleavage, the α-Gal-positive immunostaining was essentially undetectable in enzyme-treated porcine skin. The inhibition rate constant of the monoclonal anti-Gal antibody M86 binding to α-Gal-bovine serum albumin in ELISA was reduced from 15.0 ± 4.3 (n = 10) to 6.1 ± 2.6 (n = 7) after enzyme treatment, in comparison to 4.4 ± 1.8 (n = 9) background inhibition of decellularized human skin (the ultimate negative control), which demonstrates ∼ 84% elimination of α-Gal epitopes in treated porcine skin. To examine the suitability of two detection methods for the routine quality control application, comparative studies were made with control and enzyme-treated porcine skin, porcine skin from the α-Gal knockout animal, as well as decellularized human skin. The data show that the traditional immunohistochemistry and, to a less extent, the inhibition ELISA with further modifications can be used as quality control tools in the production and selection of biocompatible bioprosthetic devices. The biological evaluation of enzyme-treated porcine skin is ongoing with a small animal model and a nonhuman primate model.


Subject(s)
Antigens/metabolism , Dermis/metabolism , Galactose/metabolism , alpha-Galactosidase/metabolism , Animals , Antibodies, Monoclonal/metabolism , Cattle , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Fluorescent Antibody Technique , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...