Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
PLoS One ; 13(8): e0201585, 2018.
Article in English | MEDLINE | ID: mdl-30114249

ABSTRACT

OBJECTIVE: Metabolic syndrome (MetS) or prediabetes is a complex disorder that is defined by a clustering of cardiometabolic risk factors, including obesity, hypertriglyceridemia, reduced high-density lipoprotein (HDL) cholesterol, hypertension, and insulin resistance. Among cardiometabolic risk factors, central obesity plays a key role in the development of MetS through alterations in the secretion of adipokines and interacts with other MetS risk factors to unfavorably influence overall cardiometabolic risk. Obesity has grasped epidemic proportions in Asia, which has the highest number of people with diabetes in the world. But, the importance of central obesity in the clustering of all four MetS risk factors or vice versa in predicting severity of MetS has not yet been investigated in Asian population. Therefore, the present study examined the influence of central obesity on circulating levels of adipokines through its interaction with the clustering of cardiometabolic risk factors of MetS including hyperglycemia, hypertriglyceridemia, dyslipidemia and hypertension in Hong Kong Chinese adults. SUBJECTS: Blood samples from 83 Hong Kong Chinese adults, who were previously screened for MetS according to the guideline of the United States National Cholesterol Education Program Expert Panel Adult Treatment Panel III criteria were selected. Insulin and adipokines, including visfatin, chemerin, plasminogen activator inhibitor-1 (PAI-1), resistin, C-C motif chemokine ligand 2 (CCL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), tumour necrosis factor-α (TNF-α), leptin and adiponectin were assessed. RESULTS: The interacting effect of central obesity with all of the other four MetS risk factors increased the proinflammatory status of adipokines (TNF-α, leptin) and decreased the anti-inflammatory status of adipokine (adiponectin). CONCLUSION: Our results indicate that the inflammatory status of MetS may be more severe in the presence of central obesity. Adipokines, as biomarkers for pathophysiological changes, may help to improve early patient identification and to predict MetS-associated morbidity and mortality.


Subject(s)
Adipokines/blood , Metabolic Syndrome/metabolism , Obesity, Abdominal/metabolism , Adiponectin/blood , Aged , Cardiovascular Diseases , Female , Hong Kong , Humans , Insulin/blood , Leptin/blood , Male , Metabolic Syndrome/blood , Metabolic Syndrome/etiology , Middle Aged , Obesity, Abdominal/blood , Obesity, Abdominal/complications , Risk Factors , Tumor Necrosis Factor-alpha/blood
2.
Front Physiol ; 9: 294, 2018.
Article in English | MEDLINE | ID: mdl-29636702

ABSTRACT

Central obesity and hypertension are common risk factors for the metabolic syndrome, cardiovascular and renal diseases. Studies have shown that it is more difficult to control blood pressure and prevent end-organ damage in obese individuals with hypertension compared to their non-obese counterparts, especially among women. Obese females have a 6 times higher risk of developing hypertension than non-obese females while obese males are at a 1.5 times higher risk of developing hypertension, compared to their non-obese counterparts. Indeed, the inter-relationship between obesity and hypertension is unclear. Adipokines have been proposed to play a mediating role in the relationship between obesity and hypertension and are involved in the pathogenesis of metabolic diseases. Therefore, this study sought to determine the role of adipokines (adiponectin, plasminogen activator inhibitor-1, leptin, and tumor necrosis factor-α) in hypertensive Hong Kong Chinese women with central obesity. A total of 387 women aged 58 ± 11 years who were examined with a 2 × 2 factorial design for central obesity (waist circumference ≥ 80 cm) and hypertension (blood pressure ≥ 140/90 mmHg), were recruited from a pool of 1,492 Hong Kong Chinese adults who were previously screened for metabolic syndrome. Subjects with hyperglycemia, hypertriglyceridemia, and dyslipidemia were excluded to eliminate confounding effects. Our findings revealed that hypertensive women with central obesity had a lower anti-inflammatory status (adiponectin) and a higher pro-inflammatory status (TNF-α) than obese alone or hypertensive alone women. Also, women with central obesity had higher circulatory PAI-1 and leptin concentrations than their non-obese counterparts. We conclude that obesity may shift toward a more pro-inflammatory state and may become more severe in the presence of hypertension or vice versa.

3.
Sci Rep ; 8(1): 3689, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29487339

ABSTRACT

Pressure-induced injury (PI), such as a pressure ulcer, in patients with limited mobility is a healthcare issue worldwide. PI is an injury to skin and its underlying tissue such as skeletal muscle. Muscle compression, composed of mechanical deformation of muscle and external load, leads to localized ischemia and subsequent unloading reperfusion and, hence, a pressure ulcer in bed-bound patients. Although the gross factors involved in PI have been identified, little is known about the exact disease mechanism or its links to apoptosis, autophagy and inflammation. Here, we report that PI is mediated by intrinsic apoptosis and exacerbated by autophagy. Conditional ablation of Bax and Bak activates the Akt-mTOR pathway and Bnip3-mediated mitophagy and preserves mitochondrial contents in compressed muscle. Moreover, we find that the presence/absence of Bax and Bak alters the roles and functions of autophagy in PI. Our results suggest that manipulating apoptosis and autophagy are potential therapeutic targets for treatment and prevention of PI.


Subject(s)
Muscle, Skeletal/metabolism , Pressure/adverse effects , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism , Animals , Blotting, Western , Cell Death/genetics , Cell Death/physiology , Immunoprecipitation , Male , Mice , Mice, Knockout , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2-Associated X Protein/genetics
4.
Scand J Med Sci Sports ; 28(3): 1130-1138, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29205515

ABSTRACT

Metabolic syndrome (MetS) is associated with diabetes mellitus and cardiovascular diseases. Our previous study indicated that people with MetS showed a decrease in waist circumference and a decreasing trend in blood pressure after 1-year yoga. This study investigated the effect of yoga on MetS people with high-normal blood pressure by exploring modulations in proinflammatory adipokines (leptin, chemerin, visfatin, and plasminogen activator inhibitor-1 or PAI-1) and an anti-inflammatory adipokine (adiponectin). A total of 97 Hong Kong Chinese individuals aged 57.6 ± 9.1 years with MetS and high-normal blood pressure were randomly assigned to control (n = 45) and yoga groups (n = 52). Participants in the control group were not given any intervention but were contacted monthly to monitor their health status. Participants in the yoga group underwent a yoga training program with three 1-hour yoga sessions weekly for 1 year. The participants' sera were harvested and assessed for adipokines. Generalized estimating equation (GEE) was used to examine the interaction effect between 1-year time (pre vs post), and intervention (control vs yoga). GEE analyses revealed significant interaction effects between 1-year time and yoga intervention for the decreases in leptin and chemerin and the increase in adiponectin concentration in the sera examined. These results demonstrated that 1-year yoga training decreased proinflammatory adipokines and increased anti-inflammatory adipokine in adults with MetS and high-normal blood pressure. These findings support the beneficial role of yoga in managing MetS by favorably modulating adipokines.


Subject(s)
Adipokines/blood , Hypertension/blood , Metabolic Syndrome/blood , Yoga , Aged , Chemokines/blood , Female , Humans , Intercellular Signaling Peptides and Proteins/blood , Leptin/blood , Male , Middle Aged , Nicotinamide Phosphoribosyltransferase/blood , Plasminogen Activator Inhibitor 1/blood , Risk Factors
5.
Front Physiol ; 7: 334, 2016.
Article in English | MEDLINE | ID: mdl-27547188

ABSTRACT

Cardiomyopathy is a clinical problem that occurs in the hearts of type 2 diabetic patients as well as cancer patients undergoing doxorubicin chemotherapy. The number of diabetic cancer patients is increasing but surprisingly the cardiac damaging effects of doxorubicin, a commonly used chemotherapeutic drug, on diabetic hearts have not been well-examined. As the signaling mechanisms of the doxorubicin-induced cardiomyopathy in type 2 diabetic heart are largely unknown, this study examined the molecular signaling pathways that are responsible for the doxorubicin-induced cardiotoxicity in type 2 diabetic hearts. Male 14- to 18-week-old db/db mice were used as the type 2 diabetic model, and age-matched non-diabetic db/+ mice served as controls. The db/+ non-diabetic and db/db diabetic mice were randomly assigned to the following groups: db/+CON, db/+DOX-5d, db/+DOX-7d, db/dbCON, db/dbDOX-5d, and db/dbDOX-7d. Mice assigned to doxorubicin (DOX) group were exposed to an intraperitoneal (i.p.) injection of DOX at a dose of 15 mg/kg to induce cardiomyopathy. Mice in control (CON) groups were i.p. injected with the same volume of saline instead of DOX. Mice were euthanized by overdose of ketamine and xylazine 5 or 7 days after the DOX injection. Microarray analysis was adopted to examine the changes of the whole transcriptional profile in response to doxorubicin exposure in diabetic hearts. Ventricular fractional shortening was examined as an indicator of cardiac function by transthoracic echocardiography. The presence of diabetic cardiomyopathy in db/db mice was evident by the reduction of fractional shortening. There was a further impairment of cardiac contractile function 7 days after the DOX administration in db/db diabetic mice. According to our microarray analysis, we identified a panel of regulatory genes associated with cardiac remodeling, inflammatory response, oxidative stress, and metabolism in the DOX-induced cardiac injury in diabetic heart. The microarray results of selected genes were confirmed by real time PCR. Notably, S100A8 and S100A9 were found to have a unique specific expression pattern that was coincident with the DOX-induced cardiomyopathy in diabetic hearts. Correspondingly, NF-κB expression in diabetic hearts was increased together with the elevation of S100A8/9 and activation of p38 MAPK signaling after DOX administration, which induced cardiac inflammation as demonstrated by the elevation of cardiac IL-6 level. These findings provide novel pre-clinical information for revealing the S100A8/A9-associated molecular signaling pathways that mediate the doxorubicin-induced cardiotoxicity in diabetic hearts.

6.
Front Physiol ; 7: 323, 2016.
Article in English | MEDLINE | ID: mdl-27512375

ABSTRACT

Anti-cancer agent doxorubicin (DOX) has been demonstrated to worsen insulin signaling, engender muscle atrophy, trigger pro-inflammation, and induce a shift to anaerobic glycolytic metabolism in skeletal muscle. The myotoxicity of DOX in diabetic skeletal muscle remains largely unclear. This study examined the effects of DOX on insulin signaling, muscle atrophy, pro-/anti-inflammatory microenvironment, and glycolysis metabolic regulation in skeletal muscle of db/db diabetic and db/+ non-diabetic mice. Non-diabetic db/+ mice and diabetic db/db mice were randomly assigned to the following groups: db/+CON, db/+DOX, db/dbCON, and db/dbDOX. Mice in db/+DOX and db/dbDOX groups were intraperitoneally injected with DOX at a dose of 15 mg per kg body weight whereas mice in db/+CON and db/dbCON groups were injected with the same volume of saline instead of DOX. Gastrocnemius was immediately harvested, weighed, washed with cold phosphate buffered saline, frozen in liquid nitrogen, and stored at -80°C for later analysis. The effects of DOX on diabetic muscle were neither seen in insulin signaling markers (Glut4, pIRS1Ser(636∕639), and pAktSer(473)) nor muscle atrophy markers (muscle mass, MuRF1 and MAFbx). However, DOX exposure resulted in enhancement of pro-inflammatory favoring microenvironment (as indicated by TNF-α, HIFα and pNFκBp65) accompanied by diminution of anti-inflammatory favoring microenvironment (as indicated by IL15, PGC1α and pAMPKß1Ser108). Metabolism of diabetic muscle was shifted to anaerobic glycolysis after DOX exposure as demonstrated by our analyses of PDK4, LDH and pACCSer(79). Our results demonstrated that there might be a link between inflammatory modulation and the dysregulation of aerobic glycolytic metabolism in DOX-injured diabetic skeletal muscle. These findings help to understand the pathogenesis of DOX-induced myotoxicity in diabetic muscle.

7.
Int J Mol Sci ; 17(2): 237, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26891293

ABSTRACT

Non-small cell lung cancer (NSCLC) represents about 85% of the reported cases of lung cancer. Acquired resistance to targeted therapy with epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, is not uncommon. It is thus vital to explore novel strategies to restore sensitivity to gefitinib. Provided that microRNAs (miRNAs) negatively regulate their gene targets at the transcriptional level, it is speculated that miRNA mimetics may reduce the expression, activity and signal transduction of EGFR so that sensitization of tumour sites to gefitinib-induced cytotoxicity can be achieved. Indeed, a growing body of evidence has shown that the manipulation of endogenous levels of miRNA not only attenuates the EGFR/PI3K/Akt phosphorylation cascade, but also restores apoptotic cell death in in vitro models of experimentally-induced gefitinib resistance and provoked tumour regression/shrinkage in xenograft models. These data are in concordant with the clinical data showing that the differential expression profiles of miRNA in tumour tissues and blood associate strongly with drug response and overall survival. Furthermore, another line of studies indicate that the chemopreventive effects of a variety of natural compounds may involve miRNAs. The present review aims to discuss the therapeutic capacity of miRNAs in relation to recent discoveries on EGFR-TKI resistance, including chronic drug exposure and mutations.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biological Products/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Drug Synergism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gefitinib , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mutation
8.
J Gerontol A Biol Sci Med Sci ; 71(6): 730-9, 2016 06.
Article in English | MEDLINE | ID: mdl-26450947

ABSTRACT

Study of the exacerbating effects of chemotherapeutics, such as doxorubicin, on the impairment of insulin metabolic signaling in aged skeletal muscle is very limited. Here, we tested the hypothesis that activation of sirtuin 1 deacetylase activity by resveratrol would prevent the disruption of insulin signaling and augmentation of catabolic markers induced by doxorubicin in aged skeletal muscle. Two- and 10-month-old senescence-accelerated mice (prone 8) were randomized to receive saline, doxorubicin, doxorubicin and resveratrol, or a combination of doxorubicin, resveratrol, and sirtinol or EX527. Doxorubicin reduced the sirtuin 1 activity without affecting the phosphorylation levels of IRS1(Ser307), mTOR(Ser2481), Akt(Thr308/Ser473), membranous glucose transporter 4, protein abundance of PDK4, and enzymatic activity of pyruvate dehydrogenase in aged muscles. Intriguingly, resveratrol attenuated the doxorubicin-induced elevations of apoptotic and catabolic markers measured as Bax, caspase 3 activity, apoptotic DNA fragmentation, MuRF-1, ubiquitinated proteins, and proteasomal activity in aged muscles, whereas these beneficial effects were abolished on inhibition of sirtuin 1 by sirtinol or EX527. Markers of insulin signaling were not affected by doxorubicin or resveratrol in the senescent skeletal muscle. Nevertheless, the antiapoptotic and anticatabolic effects of resveratrol in aged skeletal muscle treated with doxorubicin were mediated in a sirtuin 1-dependent signaling manner.


Subject(s)
Cardiotoxicity/prevention & control , Doxorubicin/toxicity , Muscle, Skeletal/drug effects , Sirtuin 1/drug effects , Sirtuin 1/metabolism , Stilbenes/pharmacology , Age Factors , Animals , Apoptosis/drug effects , Cardiotoxicity/etiology , Caspase 3/metabolism , Enzyme-Linked Immunosorbent Assay , Male , Mice , Muscle, Skeletal/metabolism , Oxidative Stress/drug effects , Proteasome Endopeptidase Complex/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Random Allocation , Resveratrol , Signal Transduction/drug effects , Staining and Labeling
9.
Front Physiol ; 6: 293, 2015.
Article in English | MEDLINE | ID: mdl-26557094

ABSTRACT

Our current understanding on the molecular mechanisms by which sustained compression induces skeletal muscle injury is very limited. This study aimed to test the hypothesis that activation of SIRT1 by the natural antioxidant resveratrol could deactivate apoptotic and catabolic signaling in skeletal muscle exposed to moderate compression. Two cycles of 6-h constant pressure at 100 mmHg was applied to the tibialis region of right, but not left hindlimbs of Sprague Dawley rats pre-treated with DMSO (vehicle control) or resveratrol with/without sirtinol. Skeletal muscle tissues lying underneath and spatially corresponding to the compressed sites were collected for analyses. Resveratrol prevented the compression-induced manifestations of pathohistological damages including elevations of the number of interstitial nuclei and area of interstitial space and ameliorated oxidative damages measured as 4-hydroxy-2-nonenal (4HNE) and nitrotyrosine in skeletal muscle. In parallel, resveratrol augmented the expression level and activity of SIRT1 and phosphorylation levels of Foxo3a and Akt while suppressed the increases in protein abundances of p53, Bax, MAFbx, and ubiquitin, enzymatic activities of caspase 3 and 20S proteasome, and apoptotic DNA fragmentation in the compressed muscle. These favorable myoprotective effects of resveratrol were diminished upon pharmacological blockade of SIRT1 by using sirtinol. These novel data support the hypothesis that the anti-apoptotic and anti-catabolic effects of resveratrol on compression injury in skeletal muscle required the action of SIRT1.

10.
Pflugers Arch ; 467(12): 2555-69, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26228926

ABSTRACT

Impairment of insulin signaling in skeletal muscle detrimentally affects insulin-stimulated disposal of glucose. Restoration of insulin signaling in skeletal muscle is important as muscle is one of the major sites for disposal of blood glucose. Recently, unacylated ghrelin (UnAG) has received attention in diabetic research due to its favorable actions on improving glucose tolerance, glycemic control, and insulin sensitivity. The investigation of UnAG has entered phase Ib clinical trial in type 2 diabetes and phase II clinical trial in hyperphagia in Prader-Willi syndrome. Nonetheless, the precise mechanisms responsible for the anti-diabetic actions of UnAG remain incompletely understood. In this study, we examined the effects of UnAG on restoring the impaired insulin signaling in skeletal muscle of db/db diabetic mice. Our results demonstrated that UnAG effectively restored the impaired insulin signaling in diabetic muscle. UnAG decreased insulin receptor substrate (IRS) phosphorylation, increased protein kinase B (Akt) phosphorylation, and, hence, suppressed mTOR signaling. Consequently, UnAG enhanced Glut4 localization and increased PDH activity in the diabetic skeletal muscle. Intriguingly, our data indicated that UnAG normalized the suppressed autophagic signaling in diabetic muscle. In conclusion, our findings illustrated that UnAG restored the impaired insulin and autophagic signaling in skeletal muscle of diabetic mice, which are valuable to understand the underlying mechanisms of the anti-diabetic action of UnAG at peripheral skeletal muscle level.


Subject(s)
Autophagy , Diabetes Mellitus, Type 2/drug therapy , Ghrelin/pharmacology , Hypoglycemic Agents/pharmacology , Insulin/blood , Muscle, Skeletal/metabolism , Signal Transduction , Acetylation , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Ghrelin/therapeutic use , Glucose Transporter Type 4/metabolism , Hypoglycemic Agents/therapeutic use , Insulin Receptor Substrate Proteins/metabolism , Male , Mice , Muscle, Skeletal/drug effects , Phosphorylation , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Leptin/genetics , TOR Serine-Threonine Kinases/metabolism
11.
Sci Rep ; 5: 10973, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26205693

ABSTRACT

Co-expression analysis reveals useful dysregulation patterns of gene cooperativeness for understanding cancer biology and identifying new targets for treatment. We developed a structural strategy to identify co-expressed gene networks that are important for chronic myelogenous leukemia (CML). This strategy compared the distributions of expressional correlations between CML and normal states, and it identified a data-driven threshold to classify strongly co-expressed networks that had the best coherence with CML. Using this strategy, we found a transcriptome-wide reduction of co-expression connectivity in CML, reflecting potentially loosened molecular regulation. Conversely, when we focused on nucleophosmin 1 (NPM1) associated networks, NPM1 established more co-expression linkages with BCR-ABL pathways and ribosomal protein networks in CML than normal. This finding implicates a new role of NPM1 in conveying tumorigenic signals from the BCR-ABL oncoprotein to ribosome biogenesis, affecting cellular growth. Transcription factors may be regulators of the differential co-expression patterns between CML and normal.


Subject(s)
Gene Expression Regulation, Leukemic , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Models, Biological , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Ribosomes/metabolism , Cell Line, Tumor , Genetic Linkage , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Nucleophosmin , Ribosomes/genetics
12.
BMC Bioinformatics ; 16: 182, 2015 May 31.
Article in English | MEDLINE | ID: mdl-26026612

ABSTRACT

BACKGROUND: Both differential expression (DE) and differential co-expression (DC) analyses are appreciated as useful tools in understanding gene regulation related to complex diseases. The performance of integrating DE and DC, however, remains unexplored. RESULTS: In this study, we proposed a novel analytical approach called DECODE (Differential Co-expression and Differential Expression) to integrate DC and DE analyses of gene expression data. DECODE allows one to study the combined features of DC and DE of each transcript between two conditions. By incorporating information of the dependency between DC and DE variables, two optimal thresholds for defining substantial change in expression and co-expression are systematically defined for each gene based on chi-square maximization. By using these thresholds, genes can be categorized into four groups with either high or low DC and DE characteristics. In this study, DECODE was applied to a large breast cancer microarray data set consisted of two thousand tumor samples. By identifying genes with high DE and high DC, we demonstrated that DECODE could improve the detection of some functional gene sets such as those related to immune system, metastasis, lipid and glucose metabolism. Further investigation on the identified genes and the associated functional pathways would provide an additional level of understanding of complex disease mechanism. CONCLUSIONS: By complementing the recent DC and the traditional DE analyses, DECODE is a valuable methodology for investigating biological functions of genes exhibiting disease-associated DE and DC combined characteristics, which may not be easily revealed through DC or DE approach alone. DECODE is available at the Comprehensive R Archive Network (CRAN): http://cran.r-project.org/web/packages/decode/index.html .


Subject(s)
Algorithms , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Computational Biology/methods , Gene Expression Profiling/methods , Gene Regulatory Networks , Software , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Protein Interaction Maps
13.
Biomed Res Int ; 2015: 610595, 2015.
Article in English | MEDLINE | ID: mdl-25961029

ABSTRACT

BACKGROUND: Nucleophosmin 1 (NPM1) plays an important role in ribosomal synthesis and malignancies, but NPM1 mutations occur rarely in the blast-crisis and chronic-phase chronic myelogenous leukemia (CML) patients. The NPM1-associated gene set (GCM_NPM1), in total 116 genes including NPM1, was chosen as the candidate gene set for the coexpression analysis. We wonder if NPM1-associated genes can affect the ribosomal synthesis and translation process in CML. RESULTS: We presented a distribution-based approach for gene pair classification by identifying a disease-specific cutoff point that classified the coexpressed gene pairs into strong and weak coexpression structures. The differences in the coexpression patterns between the normal and the CML groups were reflected from the overall structure by performing two-sample Kolmogorov-Smirnov test. Our developed method effectively identified the coexpression pattern differences from the overall structure: P value = 1.71 × 10(-22) < 0.05 for the maximum deviation D = 0.109. Moreover, we found that genes involved in the ribosomal synthesis and translation process tended to be coexpressed in the CML group. CONCLUSION: Our developed method can identify the coexpression difference between two different groups. Dysregulation of ribosomal synthesis and translation process may be related to the CML disease. Our significant findings may provide useful information for the novel CML mechanism exploration and cancer treatment.


Subject(s)
Gene Expression Profiling/methods , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Nuclear Proteins/biosynthesis , Ribosomes/metabolism , Blast Crisis/genetics , Gene Expression Regulation, Leukemic , Genetic Association Studies , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mutation , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Nucleophosmin , Ribosomes/genetics
14.
Acta Diabetol ; 52(6): 1063-75, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25959421

ABSTRACT

AIMS: Activation of Foxo1 is known to promote apoptosis and disturbances to insulin signalling. However, their modulating roles in aged skeletal muscle are not clear. The present study tested the hypothesis that long-term (i.e. 8 month) resveratrol supplementation would improve physical traits including exercise capacity and basal voluntary activity of aged mice and modulate insulin/apoptotic signalling in aged skeletal muscle. This study also examined whether these resveratrol-associated alterations would involve orchestration of the SIRT1-Foxo1 signalling axis. METHODS: Two-month-old SAMP8 mice were randomly assigned to young, aged and aged with resveratrol treatment (AR) groups. The AR mice were supplemented with 4.9 mg(-1) kg(-1) day(-1) resveratrol for 8 months. All animals were subject to endurance capacity test and voluntary motor behaviour assessment. The lateral gastrocnemius muscle tissues were harvested for further analyses. RESULTS: Long-term resveratrol treatment significantly alleviated the age-associated reductions in exercise capacity and voluntary motor behaviour. The protein content, but not the deacetylase activity of SIRT1 was increased with concomitant elevations of p300 acetylase and acetylation of Foxo1 in aged muscle. The aged muscle also manifested signs of impaired insulin signalling including attenuated phosphorylation of Akt, activity of pyruvate dehydrogenase and membrane trafficking of GLUT4 and elevated levels of phosphorylated IRS1 and iNOS and apoptotic activation measured as Bim, p53 and apoptotic DNA fragmentation. Intriguingly, all these age-related adverse changes were mitigated with the activation of SIRT1 deacetylase activity after long-term resveratrol treatment. CONCLUSIONS: These data suggest that modulation of the SIRT1-Foxo1 axis by long-term resveratrol treatment enhances physical traits and alleviates the unfavourable changes in insulin and apoptotic signalling in aged muscle.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Apoptosis/drug effects , Insulin/metabolism , Muscle, Skeletal/drug effects , Signal Transduction/drug effects , Sirtuin 1/metabolism , Stilbenes/pharmacology , Aging , Animals , Forkhead Box Protein O1/metabolism , Male , Mice , Motor Activity/drug effects , Muscle Proteins/metabolism , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Oxidative Stress/drug effects , Physical Endurance/drug effects , Pyruvate Dehydrogenase Complex/metabolism , Resveratrol , Sirtuin 1/drug effects
15.
Biomed Res Int ; 2015: 459840, 2015.
Article in English | MEDLINE | ID: mdl-25821802

ABSTRACT

BACKGROUND: Gene expression levels change to adapt the stress, such as starvation, toxin, and radiation. The changes are signals transmitted through molecular interactions, eventually leading to two cellular fates, apoptosis and autophagy. Due to genetic variations, the signals may not be effectively transmitted to modulate apoptotic and autophagic responses. Such aberrant modulation may lead to carcinogenesis and drug resistance. The balance between apoptosis and autophagy becomes very crucial in coping with the stress. Though there have been evidences illustrating the apoptosis-autophagy interplay, the underlying mechanism and the participation of the regulators including transcription factors (TFs) and microRNAs (miRNAs) remain unclear. RESULTS: Gene network is a graphical illustration for exploring the functional linkages and the potential coordinate regulations of genes. Microarray dataset for the study of chronic myeloid leukemia was obtained from Gene Expression Omnibus. The expression profiles of those genes related to apoptosis and autophagy, including MCL1, BCL2, ATG, beclin-1, BAX, BAK, E2F, cMYC, PI3K, AKT, BAD, and LC3, were extracted from the dataset to construct the gene networks. CONCLUSION: The network analysis of these genes explored the underlying mechanisms and the roles of TFs and miRNAs for the crosstalk between apoptosis and autophagy.


Subject(s)
Apoptosis , Autophagy , Gene Expression Regulation, Neoplastic , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Models, Biological , Neoplasm Proteins/metabolism , Computer Simulation , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Signal Transduction
16.
J Physiol ; 593(8): 1887-99, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25665036

ABSTRACT

KEY POINTS: Doxorubicin induced functional deteriorations and elevations of USP7-related apoptotic/catabolic signalling in the senescent heart Resveratrol protects against doxorubicin-induced alterations through the restoration of SIRT1 deacetylase activity ABSTRACT: A compromised cardiac function is often seen in elderly cancer patients receiving doxorubicin therapy. The present study tested the hypothesis that acute intervention with resveratrol, a natural anti-oxidant found in grapes and red wine, reduces the cardiotoxicity of doxorubicin through restoration of sirtuin 1 (SIRT1) deacetylase activity, and attenuation of the catabolic/apoptotic pathways orchestrated by USP7, a p53 deubiquitinating protein, using young (aged 2 months) and old (aged 10 months) senescence-accelerated mice prone 8 (SAMP8). Animals were randomised to receive saline, doxorubicin, and doxorubicin in combination with resveratrol, in the presence or absence of SIRT1 inhibitors, sirtinol or EX527. Resveratrol alone, but not in combination with either of the SIRT1 inhibitors, suppressed the doxorubicin-induced impairment of cardiac systolic function in aged animals. Doxorubicin reduced SIRT1 deacetylase activity, and elevated proteasomal activity and USP7; it also increased the protein level of p300 and ubiquitinated proteins in hearts from aged SAMP8. These doxorubicin-induced alterations were prevented by resveratrol, whereas the protective action of resveratrol was antagonised by sirtinol and EX527. In young SAMP8 hearts, resveratrol attenuated the doxorubicin-induced increases in acetylation of Foxo1 and transactivation of MuRF-1, whereas these mitigations were not found after treatment with SIRT1 inhibitors. However, the protein contents of acetylated Foxo1 and MuRF-1 were not affected by any of the drugs studied in aged SAMP8 hearts. Resveratrol also ameliorated the augmentation of pro-apoptotic markers including p53, Bax, caspase 3 activity and apoptotic DNA fragmentation induced by doxorubicin in hearts from aged animals, whereas these reductions were diminished by combined treatment with SIRT1 inhibitors. These data demonstrate that resveratrol ameliorates doxorubicin-induced cardiotoxicity in aged hearts through the restoration of SIRT1 activity to attenuate USP7-related catabolic/pro-apoptotic signalling.


Subject(s)
Antioxidants/pharmacology , Cardiotoxicity/prevention & control , Doxorubicin/pharmacology , Sirtuin 1/metabolism , Stilbenes/pharmacology , Ubiquitin-Specific Proteases/metabolism , Animals , Apoptosis/drug effects , Cardiotoxicity/etiology , Heart , Mice , Myocytes, Cardiac/metabolism , Oxidative Stress/drug effects , Resveratrol , Signal Transduction/drug effects , Ubiquitin-Specific Peptidase 7
17.
Cell Physiol Biochem ; 35(2): 541-52, 2015.
Article in English | MEDLINE | ID: mdl-25612477

ABSTRACT

Aging individuals and diabetic patients often exhibit concomitant reductions of skeletal muscle mass/strength and insulin sensitivity, suggesting an intimate link between muscle aging and insulin resistance. Foxo1, a member of the FOXO transcription factor family, is an important player in insulin signaling due to its inhibitory role in glucose uptake and utilization in skeletal muscle. Phosphorylation of Foxo1 is thought to mitigate the transactivation of pyruvate dehydrogenase lipoamide kinase 4 (PDK4), which is a negative regulator of the glycolytic enzyme pyruvate dehydrogenase (PDH). In contrast, how aging would regulate acetylation/deacetylation machineries and glucose utilization in skeletal muscle through the Foxo1/PDH axis remains largely undetermined. Accumulating body of evidence have shown that resveratrol, a natural polyphenol in grapes and red wine, activates the longevity-related protein sirtuin 1 (SIRT1) and augments insulin sensitivity in addition to its well-documented effects on mitochondrial energetics. The present review summarizes the role of Foxo1/SIRT1 in insulin signaling in skeletal muscle and proposes the insight that activation of SIRT1 deacetylase activity to deacetylate and suppress the Foxo1-induced transactivation of PDK4 may represent an anti-hyperglycemic mechanism of resveratrol in aging skeletal muscle.


Subject(s)
Cellular Senescence/drug effects , Forkhead Transcription Factors/metabolism , Insulin Resistance , Muscle, Skeletal/drug effects , Sirtuin 1/metabolism , Stilbenes/pharmacology , Animals , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Resveratrol , Signal Transduction
18.
Mol Cell Endocrinol ; 401: 155-64, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25450862

ABSTRACT

[D-Lys3]-GHRP-6 is regarded as a highly selective growth-hormone secretagogue receptor (GHSR) antagonist and has been widely used to investigate the dependency of GHSR-1a signalling mediated by acylated ghrelin. However, [D-Lys3]-GHRP-6 has been reported to influence other cellular processes which are unrelated to GHSR-1a. This study aimed to examine the effects of [D-Lys3]-GHRP-6 on autophagic and apoptotic cellular signalling in skeletal muscle. [D-Lys3]-GHRP-6 enhanced the autophagic signalling demonstrated by the increases in protein abundances of beclin-1 and LC3 II-to-LC3 1 ratio in both normal muscle and doxorubicin-injured muscle. [D-Lys3]-GHRP-6 reduced the activation of muscle apoptosis induced by doxorubicin. No histological abnormalities were observed in the [D-Lys3]-GHRP-6-treated muscle. Intriguingly, the doxorubicin-induced increase in centronucleated muscle fibres was not observed in muscle treated with [D-Lys3]-GHRP-6, suggesting the myoprotective effects of [D-Lys3]-GHRP-6 against doxorubicin injury. The [D-Lys3]-GHRP-6-induced activation of autophagy was found to be abolished by the co-treatment of CXCR4 antagonist, suggesting that the pro-autophagic effects of [D-Lys3]-GHRP-6 might be mediated through CXCR4. In conclusion, [D-Lys3]-GHRP-6 exhibits pro-autophagic effects on skeletal muscle under both normal and doxorubicin-injured conditions.


Subject(s)
Autophagy , Doxorubicin/adverse effects , Muscle, Skeletal/drug effects , Oligopeptides/administration & dosage , Amides/pharmacology , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Autophagy/drug effects , Beclin-1 , Benzylamines , Cyclams , Heterocyclic Compounds/pharmacology , Male , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Muscle Cells/drug effects , Muscle, Skeletal/pathology , Piperidines/pharmacology , Quaternary Ammonium Compounds/pharmacology , Quinazolinones/pharmacology , Receptors, CXCR4 , Signal Transduction/drug effects
19.
Acta Diabetol ; 52(2): 293-306, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25192951

ABSTRACT

AIM: Diabetic cardiomyopathy is a specific complication of type 2 diabetes mellitus, which causes progressive cardiac dysfunction. Desacyl ghrelin has been preliminarily demonstrated to have beneficial effects on cardiovascular system and glucose metabolism, which are both related to diabetic cardiomyopathy. The aim of this study was to investigate the protective effects of desacyl ghrelin on cardiac dysfunction, cardiac fibrosis, and cellular autophagy in a type 2 diabetic mouse model. MATERIALS AND METHODS: Fourteen- to eighteen-week-old db/db diabetic and db/+ non-diabetic mice were intraperitoneally treated with desacyl ghrelin at a dosage of 100 µg/kg for ten consecutive days. Ventricular fractional shortening was examined as an indicator of cardiac function by transthoracic echocardiography. RESULTS: The presence of diabetic cardiomyopathy was evident by the reduction in fractional shortening shown in our examined db/db mice. Intriguingly, this reduction in fractional shortening was not observed in the hearts of db/db mice treated with desacyl ghrelin. Cardiac fibrosis (indicated by excessive collagen deposition, decreased by Adiponectin and Mmp13 expression, and up-regulated by Mmp8 expression) and impairment of autophagic signalling (indicated by decreases in Foxo3 and LC3 II-to-LC3 I ratio) were shown in the hearts of diabetic mice. All these cellular and molecular alterations were alleviated by desacyl ghrelin treatment. The key cardiac pro-survival cellular signals including AMPK, Akt, ERK1/2, and GSK3α/ß were impaired in the diabetic hearts, but the administration of desacyl ghrelin attenuated these signalling impairments. CONCLUSIONS: These results collectively demonstrate that desacyl ghrelin protects the heart against cardiac dysfunction in type 2 diabetic mice by inhibiting excessive collagen deposition and enhancing cardiac autophagic signalling via the pro-survival cellular AMPK/ERK1/2 signalling pathways.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diabetic Cardiomyopathies/prevention & control , Ghrelin/administration & dosage , Adiponectin/genetics , Adiponectin/metabolism , Animals , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Disease Models, Animal , Heart/physiopathology , Humans , Male , Matrix Metalloproteinase 8/genetics , Matrix Metalloproteinase 8/metabolism , Mice
20.
BMC Genet ; 15: 147, 2014 Dec 20.
Article in English | MEDLINE | ID: mdl-25526816

ABSTRACT

BACKGROUND: Myeloproliferative neoplasms (MPNs) are a group of haematological malignancies that can be characterised by a somatic mutation (JAK2V617F). This mutation causes the bone marrow to produce excessive blood cells and is found in polycythaemia vera (~95%), essential thrombocythaemia and primary myelofibrosis (both ~50%). It is considered as a major genetic factor contributing to the development of these MPNs. No genetic association study of MPN in the Hong Kong population has so far been reported. Here, we investigated the relationship between germline JAK2 polymorphisms and MPNs in Hong Kong Chinese to find causal variants that contribute to MPN development. We analysed 19 tag single nucleotide polymorphisms (SNPs) within the JAK2 locus in 172 MPN patients and 470 healthy controls. Three of these 19 SNPs defined the reported JAK2 46/1 haplotype: rs10974944, rs12343867 and rs12340895. Allele and haplotype frequencies were compared between patients and controls by logistic regression adjusted for sex and age. Permutation test was used to correct for multiple comparisons. With significant findings from the 19 SNPs, we then examined 76 additional SNPs across the 148.7-kb region of JAK2 via imputation with the SNP data from the 1000 Genomes Project. RESULTS: In single-marker analysis, 15 SNPs showed association with JAK2V617F-positive MPNs (n = 128), and 8 of these were novel MPN-associated SNPs not previously reported. Exhaustive variable-sized sliding-window haplotype analysis identified 184 haplotypes showing significant differences (P < 0.05) in frequencies between patients and controls even after multiple-testing correction. However, single-marker alleles exhibited the strongest association with V617F-positive MPNs. In local Hong Kong Chinese, rs12342421 showed the strongest association signal: asymptotic P = 3.76 × 10-15, empirical P = 2.00 × 10-5 for 50,000 permutations, OR = 3.55 for the minor allele C, and 95% CI, 2.59-4.87. Conditional logistic regression also signified an independent effect of rs12342421 in significant haplotype windows, and this independent effect remained unchanged even with the imputation of additional 76 SNPs. No significant association was found between V617F-negative MPNs and JAK2 SNPs. CONCLUSION: With a large sample size, we reported the association between JAK2V617F-positive MPNs and 15 tag JAK2 SNPs and the association of rs12342421 being independent of the JAK2 46/1 haplotype in Hong Kong Chinese population.


Subject(s)
Asian People/genetics , Janus Kinase 2/genetics , Myeloproliferative Disorders/genetics , Polymorphism, Single Nucleotide , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , DNA Mutational Analysis , Female , Genetic Association Studies , Genotype , Haplotypes , Hong Kong , Humans , Linkage Disequilibrium , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...