Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; : 174611, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992356

ABSTRACT

Air pollution induced by fine particulate matter with diameter ≤ 2.5 µm (PM2.5) poses a significant challenge for global air quality management. Understanding how factors such as climate change, land use and land cover change (LULCC), and changing emissions interact to impact PM2.5 remains limited. To address this gap, we employed the Community Earth System Model and examined both the individual and combined effects of these factors on global surface PM2.5 in 2010 and projected scenarios for 2050 under different Shared Socioeconomic Pathways (SSPs). Our results reveal biomass-burning and anthropogenic emissions as the primary drivers of surface PM2.5 across all SSPs. Less polluted regions like the US and Europe are expected to experience substantial PM2.5 reduction in all future scenarios, reaching up to ~5 µg m-3 (70 %) in SSP1. However, heavily polluted regions like India and China may experience varied outcomes, with a potential decrease in SSP1 and increase under SSP3. Eastern China witness ~20 % rise in PM2.5 under SSP3, while northern India may experience ~70 % increase under same scenario. Depending on the region, climate change alone is expected to change PM2.5 up to ±5 µg m-3, while the influence of LULCC appears even weaker. The modest changes in PM2.5 attributable to LULCC and climate change are associated with aerosol chemistry and meteorological effects, including biogenic volatile organic compound emissions, SO2 oxidation, and NH4NO3 formation. Despite their comparatively minor role, LULCC and climate change can still significantly shape future air quality in specific regions, potentially counteracting the benefits of emission control initiatives. This study underscores the pivotal role of changes in anthropogenic emissions in shaping future PM2.5 across all SSP scenarios. Thus, addressing all contributing factors, with a primary focus on reducing anthropogenic emissions, is crucial for achieving sustainable reduction in surface PM2.5 levels and meeting sustainable pollution mitigation goals.

2.
Sci Total Environ ; 906: 167759, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37832689

ABSTRACT

Surface ozone (O3) is a major air pollutant and greenhouse gas with significant risks to human health, vegetation, and climate. Uncertainties around the impacts of various critical factors on O3 is crucial to understand. We used the Community Earth System Model to investigate the impacts of land use and land cover change (LULCC), climate, and emissions on global O3 air quality under selected Shared Socioeconomic Pathways (SSPs). Our findings show that increasing forest cover by 20 % under SSP1 in East China, Europe, and the eastern US leads to higher isoprene emissions leading 2-5 ppb increase in summer O3 levels. Climate-induced meteorological changes, like rising temperatures, further enhance BVOC emissions and increase O3 levels by 10-20 ppb in urban areas with high NOx levels. However, higher BVOC emissions can reduce O3 levels by 5-10 ppb in remote environments. Future NOx emissions control reduces O3 levels by 5-20 ppb in the US and Europe in all SSPs, but reductions in NOx and changes in oxidant titration increase O3 in southeast China in SSP5. Increased NOx emissions in southern Africa and India significantly elevate O3 levels up to 15 ppb under different SSPs. Climate change is equally important as emissions changes, sometimes countering the benefits of emissions control. The combined effects of emissions, climate, and land cover result in worse O3 air quality in northern India (+40 %) and East China (+20 %) under SSP3 due to anthropogenic NOx and climate-induced BVOC emissions. Over the northern hemisphere, surface O3 decreases due to reduced NOx emissions, although climate and land use changes can increase O3 levels regionally. By 2050, O3 levels in most Asian regions exceed the World Health Organization safety limit for over 150 days per year. Our study emphasizes the need to consider complex interactions for effective air pollution control and management in the future.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Humans , Ozone/analysis , Models, Theoretical , Air Pollution/analysis , Air Pollutants/analysis , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...