Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 186(2-3): 1560-7, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21215517

ABSTRACT

In this paper, F-TiO(2) and TiN/F-TiO(2) nanoparticle photocatalysts were prepared by ball milling. The photocatalysts were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), terephthalic acid photoluminescence probing technique (TA-PL), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflection spectroscopy (DRS). The photocatalytic activity of the photocatalysts was evaluated by photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB). The results showed that the photocatalytic activity of the F-TiO(2) was much higher than that of TiO(2), and the photocatalytic activity of the TiN/F-TiO(2) was much higher than that of TiO(2) and F-TiO(2) under UV light irradiation. The optimum percentage of doped TiN is 0.2 wt.%. Compared with pure TiO(2), the photoabsorption wavelength range of the TiN/F-TiO(2) and F-TiO(2) photocatalysts red shifts and improves the utilization of the total spectrum. The effect of ball milling time on the photocatalytic activity of the photocatalysts was also investigated. The optimum ball milling time is 12 h. The mechanisms of influence on the photocatalytic activity of the photocatalysts were also discussed.


Subject(s)
Iron/chemistry , Titanium/chemistry , Algorithms , Catalysis , Coloring Agents , Crystallization , Fluorescent Dyes/chemistry , Hydroxyl Radical/analysis , Luminescence , Methylene Blue/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Photochemistry , Photoelectron Spectroscopy , Rhodamines/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...