Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37894660

ABSTRACT

Type 2 diabetes mellitus and diabetic foot ulcers remain serious worldwide health problems. Caffeic acid is one of the natural products that has been experimentally proven to have diverse pharmacological properties. This study aimed to assess the inhibitory activity of caffeic acid and ethanolic extract of spent coffee grounds targeting DPP-4 and MMP-9 enzymes and evaluate the molecular interactions through 50-ns molecular dynamics simulations. This study also introduced our new version of PyPLIF HIPPOS, PyPLIF HIPPOS 0.2.0, which allowed us to identify protein-ligand interaction fingerprints and interaction hotspots resulting from molecular dynamics simulations. Our findings revealed that caffeic acid inhibited the DPP-4 and MMP-9 activity with an IC50 of 158.19 ± 11.30 µM and 88.99 ± 3.35 µM while ethanolic extract of spent coffee grounds exhibited an IC50 of 227.87 ± 23.80 µg/100 µL and 81.24 ± 6.46 µg/100 µL, respectively. Molecular dynamics simulations showed that caffeic acid interacted in the plausible allosteric sites of DPP-4 and in the active site of MMP-9. PyPLIF HIPPOS 0.2.0 identified amino acid residues interacting more than 10% throughout the simulation, which were Lys463 and Trp62 in the plausible allosteric site of DPP-4 and His226 in the active site of MMP-9.


Subject(s)
Coffee , Diabetes Mellitus, Type 2 , Humans , Coffee/chemistry , Matrix Metalloproteinase 9 , Ethanol , Plant Extracts/pharmacology
2.
Molecules ; 27(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36080428

ABSTRACT

In this article, the upgrading process of the structure-based virtual screening (SBVS) protocol targeting acetylcholinesterase (AChE) previously published in 2017 is presented. The upgraded version of PyPLIF called PyPLIF HIPPOS and the receptor ensemble docking (RED) method using AutoDock Vina were employed to calculate the ensemble protein-ligand interaction fingerprints (ensPLIF) in a retrospective SBVS campaign targeting AChE. A machine learning technique called recursive partitioning and regression trees (RPART) was then used to optimize the prediction accuracy of the protocol by using the ensPLIF values as the descriptors. The best protocol resulting from this research outperformed the previously published SBVS protocol targeting AChE.


Subject(s)
Acetylcholinesterase , Machine Learning , Ligands , Molecular Docking Simulation , Retrospective Studies
3.
Molecules ; 26(9)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922338

ABSTRACT

Identification of molecular determinants of receptor-ligand binding could significantly increase the quality of structure-based virtual screening protocols. In turn, drug design process, especially the fragment-based approaches, could benefit from the knowledge. Retrospective virtual screening campaigns by employing AutoDock Vina followed by protein-ligand interaction fingerprinting (PLIF) identification by using recently published PyPLIF HIPPOS were the main techniques used here. The ligands and decoys datasets from the enhanced version of the database of useful decoys (DUDE) targeting human G protein-coupled receptors (GPCRs) were employed in this research since the mutation data are available and could be used to retrospectively verify the prediction. The results show that the method presented in this article could pinpoint some retrospectively verified molecular determinants. The method is therefore suggested to be employed as a routine in drug design and discovery.


Subject(s)
Ligands , Models, Molecular , Receptors, G-Protein-Coupled/chemistry , Binding Sites , Decision Trees , Drug Discovery/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
4.
J Chem Inf Model ; 60(8): 3697-3702, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32687350

ABSTRACT

We describe here our tool named PyPLIF HIPPOS, which was newly developed to analyze the docking results of AutoDock Vina and PLANTS. Its predecessor, PyPLIF (https://github.com/radifar/pyplif), is a molecular interaction fingerprinting tool for the docking results of PLANTS, exclusively. Unlike its predecessor, PyPLIF HIPPOS speeds up the computational times by separating the reference generation and docking analysis. PyPLIF HIPPOS also offers more options compared to PyPLIF. PyPLIF HIPPOS for Linux is stored as the Supporting Information in this application note and can be accessed in GitHub (https://github.com/radifar/PyPLIF-HIPPOS). Additionally, we present here the application of the tool in a retrospective structure-based virtual screening campaign targeting neuraminidase.


Subject(s)
Ligands , Molecular Docking Simulation , Retrospective Studies
5.
Neurosci Res ; 77(1-2): 42-9, 2013.
Article in English | MEDLINE | ID: mdl-23831515

ABSTRACT

Suberoylanilide hydroxamic acid (SAHA) is one of the epidrugs developed for cancer treatment that works epigenetically by inhibiting histone deacetylases (HDACs). SAHA has been reported to diffuse across the placenta and found in fetal plasma in preclinical study, implying that it can influence fetus if taken by pregnant cancer patients. However, report regarding this aspect and the study of in utero HDAC inhibition by SAHA especially on fate specification of neural stem/progenitor cells within the developing mammalian cortex, is yet unavailable. Here we show that transient exposure of SAHA to mouse embryos during prominent neurogenic period resulted in an enhancement of cortical neurogenesis, which is accompanied by an increased expression of proneuronal transcription factor Neurog1. Neurogenesis was enhanced due to the increase number of proliferating Tbr2+ intermediate progenitor cells following SAHA exposure. In this relation, we observed that SAHA perturbed neonatal cortical lamination because of the increased production of Cux1+ and Satb2+ upper-layer neurons, and decreased that of Ctip2+ deep-layer neurons. Furthermore, an upper-layer neuronal lineage determinant Satb2 was also up-regulated, whereas those of deep-layer ones Fezf2 and Ctip2 were down-regulated by SAHA treatment. Taken together, our study suggests that proper regulation of HDACs is important for precise embryonic corticogenesis.


Subject(s)
Antineoplastic Agents/pharmacology , Cerebral Cortex/drug effects , Cerebral Cortex/embryology , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Maternal Exposure , Neurogenesis/drug effects , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Female , Histones/metabolism , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Pregnancy , T-Box Domain Proteins/metabolism , Vorinostat
6.
Bioinformation ; 9(6): 325-8, 2013.
Article in English | MEDLINE | ID: mdl-23559752

ABSTRACT

UNLABELLED: Structure-based virtual screening (SBVS) methods often rely on docking score. The docking score is an over-simplification of the actual ligand-target binding. Its capability to model and predict the actual binding reality is limited. Recently, interaction fingerprinting (IFP) has come and offered us an alternative way to model reality. IFP provides us an alternate way to examine protein-ligand interactions. The docking score indicates the approximate affinity and IFP shows the interaction specificity. IFP is a method to convert three dimensional (3D) protein-ligand interactions into one dimensional (1D) bitstrings. The bitstrings are subsequently employed to compare the protein-ligand interaction predicted by the docking tool against the reference ligand. These comparisons produce scores that can be used to enhance the quality of SBVS campaigns. However, some IFP tools are either proprietary or using a proprietary library, which limits the access to the tools and the development of customized IFP algorithm. Therefore, we have developed PyPLIF, a Python-based open source tool to analyze IFP. In this article, we describe PyPLIF and its application to enhance the quality of SBVS in order to identify antagonists for estrogen α receptor (ERα). AVAILABILITY: PyPLIF is freely available at http://code.google.com/p/pyplif.

7.
Bioinformation ; 6(4): 164-6, 2011 May 07.
Article in English | MEDLINE | ID: mdl-21572885

ABSTRACT

Structure-based virtual screening (SBVS) protocols were developed to find cyclooxygenase-2 (COX-2) inhibitors using the Protein-Ligand ANT System (PLANTS) docking software. The directory of useful decoys (DUD) dataset for COX-2 was used to retrospectively validate the protocols; the DUD consists of 426 known inhibitors in 13289 decoys. Based on criteria used in the article describing DUD datasets, the default protocol showed poor results. However, having ARG513 as a hydrogen bond anchor increased the quality of the SBVS protocol. The modified protocol showed results that could be well considered, with a maximum enrichment factor (EF(max)) value of 32.2.

SELECTION OF CITATIONS
SEARCH DETAIL
...