Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biochem ; 93(4): 761-73, 2004 Nov 01.
Article in English | MEDLINE | ID: mdl-15660420

ABSTRACT

Osteotesticular protein tyrosine phosphatase (OST-PTP; OST), is a signaling molecule which catalyzes the removal of phosphates from tyrosine residues. It is known to be highly regulated in bone cells and has been shown to be important for the in vitro progression from a preosteoblast to a mature, mineralizing cell. However, the in vivo expression of this phosphatase during skeletogenesis has not been examined. Using Northern analysis and in situ hybridization (ISH), we have observed that this gene is strongly expressed early during the formation of the mouse skeleton. By 12.5 days postcoitum (dpc), expression of OST mRNA transcripts increases and is localized within the mesenchyme of craniofacial bones, ribs, limbs, and Meckel's cartilage. Following initiation of chondrogenesis, OST mRNA becomes restricted to the perichondrium of all endochondral elements. With ossification, this gene is also expressed by cells, presumably osteoblasts, at the chondro-osseous border and along cortical and trabecular bone surfaces. Unlike other bone markers examined such as Osterix and type II collagen, OST transcripts do not appear to be expressed by chondrocytes of epiphyseal cartilage or by non-hypertrophic or hypertrophic chondrocytes. Because the temporal expression patterns of OST and Runx2 were similar suggesting a potential interrelationship in bone regulation and function, OST expression was examined in transgenic mice lacking a functional Runx2/Cbfal protein (Runx2/Cbfal delta C (deltaC)) and possessing a cartilaginous skeleton. Interestingly, the OST gene was expressed with localization similar in wild-type, homozygous, and heterozygous embryos. These studies suggest that the expression of the OST gene may be important during skeletogenesis, potentially from commitment of mesenchymal cells to the ossification of new bones. Early in embryogenesis, regulation of OST expression may be independent of Runx2/Cbfa1.


Subject(s)
Mesenchymal Stem Cells/enzymology , Osteogenesis/physiology , Protein Tyrosine Phosphatases/biosynthesis , Animals , Core Binding Factor Alpha 1 Subunit , Female , Mice , Neoplasm Proteins/physiology , Protein Tyrosine Phosphatases/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 3 , Transcription Factors/physiology
2.
J Cell Biochem ; 87(4): 363-76, 2002.
Article in English | MEDLINE | ID: mdl-12397596

ABSTRACT

Protein tyrosine phosphatases (PTPs) are critical regulators of cellular phosphorylation functioning in processes such as cell growth, differentiation, and adhesion. Osteotesticular PTP (OST) is the only characterized member of this superfamily whose expression is regulated in osteoblasts and critical for their in vitro differentiation. Such evidence would suggest that this molecule is a key modulator of signaling events during osteogenesis, yet little is known about its genetic regulation. In an effort to examine the molecular mechanisms involved in the cellular regulation of OST, we have characterized its expression in MC3T3 osteoblasts during differentiation. Northern analysis revealed that murine OST mRNA is dramatically regulated during the preosteoblast to osteoblast progression, with predominant expression in differentiated and early mineralizing osteoblasts. This expression pattern is unique to this phosphatase since, in comparison, the structurally similar receptor PTP, LAR, and the intracellular PTP1B show little change during differentiation. Cell density contributes to this upregulated expression as confluent cultures display an increase in OST transcripts within 4 h post-plating. Transient transfection of the OST promoter in differentiating MC3T3 results in a significant increase in transcriptional activation from day 0 to day 5 of differentiation, similar in timing and intensity to the observed upregulation of the endogenous gene. This activation appears to be specific to osteoblasts, since progression to a myoblast phenotype results in no change in reporter gene activity. Culturing these preosteoblast cells in the absence of critical co-factors results in an inhibition of differentiation and leads to a delayed induction of OST transcripts as well as the attenuation of transcriptional activation. These results show that the murine OST gene is regulated at the transcriptional level in an osteoblast-specific, differentiation-dependent manner during the differentiation of MC3T3 osteoblasts. Future studies will help determine the essential regulatory elements within the OST-PTP promoter and the critical signaling pathways important in this regulation.


Subject(s)
Gene Expression Regulation , Osteoblasts/cytology , Protein Tyrosine Phosphatases/biosynthesis , Protein Tyrosine Phosphatases/genetics , Transcriptional Activation , 3T3 Cells , Animals , Blotting, Northern , Cell Differentiation , Luciferases/metabolism , Mice , Osteoblasts/metabolism , Phenotype , Plasmids/metabolism , Promoter Regions, Genetic , RNA/metabolism , RNA, Messenger/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3 , Time Factors , Transcription, Genetic , Transfection , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...