Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 12(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36010355

ABSTRACT

Atherosclerosis is known as the leading factor in heart disease with the highest mortality rate among the Malaysian population. Usually, the gold standard for diagnosing atherosclerosis is by using the coronary computed tomography angiography (CCTA) technique to look for plaque within the coronary artery. However, qualitative diagnosis for noncalcified atherosclerosis is vulnerable to false-positive diagnoses, as well as inconsistent reporting between observers. In this study, we assess the reproducibility and repeatability of segmenting atherosclerotic lesions manually and semiautomatically in CCTA images to identify the most appropriate CCTA image segmentation method for radiomics analysis to quantitatively extract the atherosclerotic lesion. Thirty (30) CCTA images were taken retrospectively from the radiology image database of Hospital Canselor Tuanku Muhriz (HCTM), Kuala Lumpur, Malaysia. We extract 11,700 radiomics features which include the first-order, second-order and shape features from 180 times of image segmentation. The interest vessels were segmentized manually and semiautomatically using LIFEx (Version 7.0.15, Institut Curie, Orsay, France) software by two independent radiology experts, focusing on three main coronary blood vessels. As a result, manual segmentation with a soft-tissuewindowing setting yielded higher repeatability as compared to semiautomatic segmentation with a significant intraclass correlation coefficient (intra-CC) 0.961 for thefirst-order and shape features; intra-CC of 0.924 for thesecond-order features with p < 0.001. Meanwhile, the semiautomatic segmentation has higher reproducibility as compared to manual segmentation with significant interclass correlation coefficient (inter-CC) of 0.920 (first-order features) and a good interclass correlation coefficient of 0.839 for the second-order features with p < 0.001. The first-order, shape order and second-order features for both manual and semiautomatic segmentation have an excellent percentage of reproducibility and repeatability (intra-CC > 0.9). In conclusion, semi-automated segmentation is recommended for inter-observer study while manual segmentation with soft tissue-windowing can be used for single observer study.

2.
Diagnostics (Basel) ; 12(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35885564

ABSTRACT

Radiomics is the process of extracting useful quantitative features of high-dimensional data that allows for automated disease classification, including atherosclerotic disease. Hence, this study aimed to quantify and extract the radiomic features from Coronary Computed Tomography Angiography (CCTA) images and to evaluate the performance of automated machine learning (AutoML) model in classifying the atherosclerotic plaques. In total, 202 patients who underwent CCTA examination at Institut Jantung Negara (IJN) between September 2020 and May 2021 were selected as they met the inclusion criteria. Three primary coronary arteries were segmented on axial sectional images, yielding a total of 606 volume of interest (VOI). Subsequently, the first order, second order, and shape order of radiomic characteristics were extracted for each VOI. Model 1, Model 2, Model 3, and Model 4 were constructed using AutoML-based Tree-Pipeline Optimization Tools (TPOT). The heatmap confusion matrix, recall (sensitivity), precision (PPV), F1 score, accuracy, receiver operating characteristic (ROC), and area under the curve (AUC) were analysed. Notably, Model 1 with the first-order features showed superior performance in classifying the normal coronary arteries (F1 score: 0.88; Inverse F1 score: 0.94), as well as in classifying the calcified (F1 score: 0.78; Inverse F1 score: 0.91) and mixed plaques (F1 score: 0.76; Inverse F1 score: 0.86). Moreover, Model 2 consisting of second-order features was proved useful, specifically in classifying the non-calcified plaques (F1 score: 0.63; Inverse F1 score: 0.92) which are a key point for prediction of cardiac events. Nevertheless, Model 3 comprising the shape-based features did not contribute to the classification of atherosclerotic plaques. Overall, TPOT shown promising capabilities in terms of finding the best pipeline and tailoring the model using CCTA-based radiomic datasets.

SELECTION OF CITATIONS
SEARCH DETAIL
...