Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(2)2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31963607

ABSTRACT

Perfluorosulphonic acid-based membranes such as Nafion are widely used in fuel cell applications. However, these membranes have several drawbacks, including high expense, non-eco-friendliness, and low proton conductivity under anhydrous conditions. Biopolymer-based membranes, such as chitosan (CS), cellulose, and carrageenan, are popular. They have been introduced and are being studied as alternative materials for enhancing fuel cell performance, because they are environmentally friendly and economical. Modifications that will enhance the proton conductivity of biopolymer-based membranes have been performed. Ionic liquids, which are good electrolytes, are studied for their potential to improve the ionic conductivity and thermal stability of fuel cell applications. This review summarizes the development and evolution of CS biopolymer-based membranes and ionic liquids in fuel cell applications over the past decade. It also focuses on the improved performances of fuel cell applications using biopolymer-based membranes and ionic liquids as promising clean energy.


Subject(s)
Cell Membrane/metabolism , Chitosan/chemistry , Electric Conductivity , Ionic Liquids/chemistry , Polymers/chemistry , Protons
2.
ACS Nano ; 10(3): 3233-40, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26943750

ABSTRACT

The presence of grain boundaries in two-dimensional (2D) materials is known to greatly affect their physical, electrical, and chemical properties. Given the difficulty in growing perfect large single-crystals of 2D materials, revealing the presence and characteristics of grain boundaries becomes an important issue for practical applications. Here, we present a method to visualize the grain structure and boundaries of 2D materials by epitaxially growing transition metal dichalcogenides (TMDCs) over them. Triangular single-crystals of molybdenum disulfide (MoS2) epitaxially grown on the surface of graphene allowed us to determine the orientation and size of the graphene grains. Grain boundaries in the polycrystalline graphene were also visualized reflecting their higher chemical reactivity than the basal plane. The method was successfully applied to graphene field-effect transistors, revealing the actual grain structures of the graphene channels. Moreover, we demonstrate that this method can be extended to determine the grain structure of other 2D materials, such as tungsten disulfide (WS2). Our visualization method based on van der Waals epitaxy can offer a facile and large-scale labeling technique to investigate the grain structures of various 2D materials, and it will also contribute to understand the relationship between their grain structure and physical properties.

3.
Phys Chem Chem Phys ; 17(38): 25210-5, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26352049

ABSTRACT

Heterostructures of two-dimensional (2D) layered materials have attracted growing interest due to their unique properties and possible applications in electronics, photonics, and energy. Reduction of the dimensionality from 2D to one-dimensional (1D), such as graphene nanoribbons (GNRs), is also interesting due to the electron confinement effect and unique edge effects. Here, we demonstrate a bottom-up approach to grow vertical heterostructures of MoS2 and GNRs by a two-step chemical vapor deposition (CVD) method. Single-layer GNRs were first grown by ambient pressure CVD on an epitaxial Cu(100) film, followed by the second CVD process to grow MoS2 over the GNRs. The MoS2 layer was found to grow preferentially on the GNR surface, while the coverage could be further tuned by adjusting the growth conditions. The MoS2/GNR nanostructures show clear photosensitivity to visible light with an optical response much higher than that of a 2D MoS2/graphene heterostructure. The ability to grow a novel 1D heterostructure of layered materials by a bottom-up CVD approach will open up a new avenue to expand the dimensionality of the material synthesis and applications.

4.
ACS Nano ; 7(12): 10825-33, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24206265

ABSTRACT

Graphene nanoribbons (GNRs) are a promising material for electronic applications, because quantum confinement in a one-dimensional nanostructure can potentially open the band gap of graphene. However, it is still a challenge to synthesize high-quality GNRs by a bottom-up approach without relying on lithographic techniques. In this work, we demonstrate lattice-oriented catalytic growth of single-layer GNRs on the surface of a heteroepitaxial Ni film. Catalytic decomposition of a poly(methyl methacrylate) film on the Ni(100) film at 1000 °C gives narrow nanoribbons with widths of 20-30 nm, which are aligned along either [011] or [011] directions of the Ni lattice. Furthermore, low-energy electron microscope (LEEM) analysis reveals that orientation of carbon hexagons in these GNRs is highly controlled by the underlying Ni(100) lattice, leading to the formation of zigzag edges. This heteroepitaxial approach would pave a way to synthesize nanoribbons with controlled orientation for future development of electronic devices based on graphene nanostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...