Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 106(8): 2827-2840, 2018 11.
Article in English | MEDLINE | ID: mdl-29282858

ABSTRACT

The influence of calcium polyphosphate (CPP) gel incorporation on the release of vancomycin and tobramycin from polymethyl methacrylate (PMMA) cement (Simplex P, SP) has been studied. Adding 10% CPP gel to SP led to a much lower burst release of vancomycin and considerably extended release of both vancomycin and tobramycin up to 24 weeks. Antibiotics released from this new material retain their bactericidal activity for up to 15 weeks. The improvement in the antibiotic release is mainly due to the molecular interactions of antibiotics with embedded CPP polyphosphate chains as confirmed by Raman spectroscopy analysis. The inclusion of CPP hydrogel also increased the SP surface roughness and pore sizes, leading to a higher release rate of antibiotics. The new material is biocompatible and has similar handling properties and mechanical strength as compared to SP cements. We believe that incorporating CPP gel provides a better and usable drug carrier for PMMA cement. © 2017 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2827-2840, 2018.


Subject(s)
Hydrogels , Methicillin-Resistant Staphylococcus aureus/growth & development , Polymethacrylic Acids , Polyphosphates , Tobramycin , Vancomycin , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/pharmacology , Polyphosphates/chemistry , Polyphosphates/pharmacology , Tobramycin/chemistry , Tobramycin/pharmacokinetics , Tobramycin/pharmacology , Vancomycin/chemistry , Vancomycin/pharmacokinetics , Vancomycin/pharmacology
2.
J Neurooncol ; 120(1): 55-62, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25038847

ABSTRACT

Raman spectroscopy provides a molecular signature of the region being studied. It is ideal for neurosurgical applications because it is non-destructive, label-free, not impacted by water concentration, and can map an entire region of tissue. The objective of this paper is to demonstrate the meaningful spatial molecular information provided by Raman spectroscopy for identification of regions of normal brain, necrosis, diffusely infiltrating glioma and solid glioblastoma (GBM). Five frozen section tissues (1 normal, 1 necrotic, 1 GBM, and 2 infiltrating glioma) were mapped in their entirety using a 300-µm-square step size. Smaller regions of interest were also mapped using a 25-µm step size. The relative concentrations of relevant biomolecules were mapped across all tissues and compared with adjacent hematoxylin and eosin-stained sections, allowing identification of normal, GBM, and necrotic regions. Raman peaks and peak ratios mapped included 1003, 1313, 1431, 1585, and 1659 cm(-1). Tissue maps identified boundaries of grey and white matter, necrosis, GBM, and infiltrating tumor. Complementary information, including relative concentration of lipids, protein, nucleic acid, and hemoglobin, was presented in a manner which can be easily adapted for in vivo tissue mapping. Raman spectroscopy can successfully provide label-free imaging of tissue characteristics with high accuracy. It can be translated to a surgical or laboratory tool for rapid, non-destructive imaging of tumor margins.


Subject(s)
Brain Mapping/methods , Brain Neoplasms/pathology , Brain/pathology , Glioblastoma/pathology , Glioma/pathology , Molecular Imaging/methods , Spectrum Analysis, Raman/methods , Aged , Case-Control Studies , Follow-Up Studies , Frozen Sections , Humans , Middle Aged , Necrosis , Prognosis
3.
J Neurooncol ; 116(3): 477-85, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24390405

ABSTRACT

The need exists for a highly accurate, efficient and inexpensive tool to distinguish normal brain tissue from glioblastoma multiforme (GBM) and necrosis boundaries rapidly, in real-time, in the operating room. Raman spectroscopy provides a unique biochemical signature of a tissue type, with the potential to provide intraoperative identification of tumor and necrosis boundaries. We aimed to develop a database of Raman spectra from normal brain, GBM, and necrosis, and a methodology for distinguishing these pathologies. Raman spectroscopy was used to measure 95 regions from 40 frozen tissue sections using 785 nm excitation wavelength. Review of adjacent hematoxylin and eosin sections confirmed histology of each region. Three regions each of normal grey matter, necrosis, and GBM were selected as a training set. Ten regions were selected as a validation set, with a secondary validation set of tissue regions containing freeze artifact. Grey matter contained higher lipid (1061, 1081 cm(-1)) content, whereas necrosis revealed increased protein and nucleic acid content (1003, 1206, 1239, 1255-1266, 1552 cm(-1)). GBM fell between these two extremes. Discriminant function analysis showed 99.6, 97.8, and 77.5% accuracy in distinguishing tissue types in the training, validation, and validation with freeze artifact datasets, respectively. Decreased classification in the freeze artifact group was due to tissue preparation damage. This study shows the potential of Raman spectroscopy to accurately identify normal brain, necrosis, and GBM as a tool to augment pathologic diagnosis. Future work will develop mapped images of diffuse glioma and neoplastic margins toward development of an intraoperative surgical tool.


Subject(s)
Brain Neoplasms/pathology , Brain/pathology , Frozen Sections , Glioblastoma/pathology , Necrosis/pathology , Spectrum Analysis, Raman , Aged , Brain Mapping , Discriminant Analysis , Female , Humans , Male , Middle Aged , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...