Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Aquat Toxicol ; 227: 105610, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32920298

ABSTRACT

Pen shell (Atrina cf. japonica) resources have been devastated in Ariake Bay, Japan, and to facilitate the recovery of this species, there is an urgent need to fully understand the factors contributing to its high levels of mortality. Pen shells living in natural waters grow through successive life stages, and environmental factors may affect these bivalves differently at different stages. Accordingly, to elucidate the causes of mortality in natural waters, it is necessary to gain an understanding of the quantitative effects of environmental factors on bivalves at each life stage. In this study, we sought to determine the differential effects of hypoxic conditions on 1-year-old (average shell length: 93.9 mm) and 2-year-old (146.5 mm) pen shells bred under artificial conditions. We exposed shells of each age group to six different dissolved oxygen (DO) concentrations for 96 h and monitored their behavior and survival rate. Based on the survival status, we estimated the lethal DO concentrations that induced 50%, 95%, and 5% mortality (LC50, LC95, and LC5, respectively) at each age. We found that for 1-year-old shells, the LC50 values at 48, 72, and 96 h were 0.51, 0.74, and 0.84 mg/L, respectively, whereas the corresponding values for 2-year-old shells were 0.74, 1.27, and 1.80 mg/L. Furthermore, we found that for 1- and 2-year-old shells, the estimated ranges from LC95 to LC5 at 48, 72, and 96 h were 0.39-0.68, 0.62-0.88, and 0.64-1.12 mg/L, and 0.31-1.75, 0.77-2.09, and 1.29-2.53 mg/L, respectively. Under low DO concentrations (0.47 to 1.93 mg/L and 0.49 to 3.30 mg/L for 1- and 2-year-old shells, respectively), we observed pen shells with more than half of their shell length protruding above the substrate. In addition to age and body size, the 1- and 2-year-old pen shells used in the present study also differed with respect to reproductive status, with 7.6% of 1-year-old and 96.7% of 2-year-old shells considered to be fully ripe. Collectively, our observations indicate that 2-year-old pen shells are less tolerant to hypoxic conditions than are 1-year-old pen shells, and we suspect that the differences in hypoxic tolerance could be attributable to differences in the physiological status of the pen shells during gonadal development. We believe the findings of this study will make an important contribution to enhancing our understanding of the effects of hypoxia on the viability of A. cf. japonica in natural waters.


Subject(s)
Bivalvia/physiology , Eutrophication , Animals , Gonads , Hypoxia , Japan
2.
Dis Aquat Organ ; 71(2): 169-73, 2006 Jul 25.
Article in English | MEDLINE | ID: mdl-16956065

ABSTRACT

Mass mortalities of the pen shell Atrina pectinata occurred in the fishing grounds of Ariake Bay, in southwestern Japan, during late spring and summer in 2003 and 2004. Histological examination revealed extensive necrosis in the epithelial cells of the kidney and gill, and impairment of the endothelial cells of the mantle arteria. Although cestode larvae belonging to the genus Tylocephalum were found in the mantle, adductor muscle, kidney, and digestive gland, their prevalence and the intensity of infection were low. Examinations of moribund pen shells for Haplosporidium spp. infection using PCR analysis and for Perkinsus spp. infection using Ray's fluid thioglycollate medium were negative. Unenveloped virus-like particles were detected by transmission electron microscopy in the cytoplasm of affected kidney and gill cells of moribund pen shells. They were icosahedral spherical and 50 to 55 nm in diameter. These virus-like particles found in moribund pen shells are different from those described in other marine mollusks, and may be the causative agent of the mass mortalities of pen shells.


Subject(s)
Bivalvia/virology , Virion/isolation & purification , Animals , Bivalvia/parasitology , Cestoda/isolation & purification , DNA Primers/chemistry , Eukaryota/isolation & purification , Gills/virology , Japan , Kidney/virology , Microscopy, Electron, Transmission/methods , Muscles/parasitology , Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL