Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791572

ABSTRACT

Artificial hybrids between cultivated Avena species and wild Avena macrostachya that possess genes for resistance to biotic and abiotic stresses can be important for oat breeding. For the first time, a comprehensive study of genomes of artificial fertile hybrids Avena sativa × Avena macrostachya and their parental species was carried out based on the chromosome FISH mapping of satellite DNA sequences (satDNAs) and also analysis of intragenomic polymorphism in the 18S-ITS1-5.8S rDNA region, using NGS data. Chromosome distribution patterns of marker satDNAs allowed us to identify all chromosomes in the studied karyotypes, determine their subgenomic affiliation, and detect several chromosome rearrangements. Based on the obtained cytogenomic data, we revealed differences between two A. macrostachya subgenomes and demonstrated that only one of them was inherited in the studied octoploid hybrids. Ribotype analyses showed that the second major ribotype of A. macrostachya was species-specific and was not represented in rDNA pools of the octoploids, which could be related to the allopolyploid origin of this species. Our results indicate that the use of marker satDNAs in cytogenomic studies can provide important data on genomic relationships within Avena allopolyploid species and hybrids, and also expand the potential for interspecific crosses for breeding.


Subject(s)
Avena , Chromosomes, Plant , DNA, Satellite , Genome, Plant , DNA, Satellite/genetics , Avena/genetics , Chromosomes, Plant/genetics , Polyploidy , DNA, Ribosomal/genetics , Genetic Markers , Hybridization, Genetic , Genetic Variation , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , In Situ Hybridization, Fluorescence
2.
Plants (Basel) ; 12(23)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38068691

ABSTRACT

The taxonomically challenging genus Calendula L. (Asteraceae) includes lots of medicinal species characterized by their high morphological and karyological variability. For the first time, a repeatome analysis of a valuable medicinal plant Calendula officinalis L. was carried out using high-throughput genome DNA sequencing and RepeatExplorer/TAREAN pipelines. The FISH-based visualization of the 45S rDNA, 5S rDNA, and satellite DNAs of C. officinalis was performed on the chromosomes of C. officinalis, C. stellata Cav., C. tripterocarpa Rupr., and C. arvensis L. Three satellite DNAs were demonstrated to be new molecular chromosome markers to study the karyotype structure. Karyograms of the studied species were constructed, their ploidy status was specified, and their relationships were clarified. Our results showed that the C. officinalis karyotype differed from the karyotypes of the other three species, indicating its separate position in the Calendula phylogeny. However, the presence of common repeats revealed in the genomes of all the studied species could be related to their common origin. Our findings demonstrated that C. stellata contributed its genome to allotetraploid C. tripterocarpa, and C. arvensis is an allohexaploid hybrid between C. stellata and C. tripterocarpa. At the same time, further karyotype studies of various Calendula species are required to clarify the pathways of chromosomal reorganization that occurred during speciation.

3.
Plants (Basel) ; 11(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36235449

ABSTRACT

Polemonium caeruleum L. (Polemoniaceae) is a valuable medicinal herb with a wide spectrum of biological activities. Under natural conditions, the productivity of this species is rather low. In this study, colchicine-induced tetraploid plants (2n = 4x = 36) of P. caeruleum were obtained, and for the first time, their morphological and cytogenetic characterization was performed. In the tetraploid plants, raw material productivity and also the content of triterpene saponins were significantly higher than in the control diploids. The analysis of chromosome behavior at meiosis and FISH chromosome mapping of 45S and 5S rDNA generally demonstrated stability of both genomes in the tetraploid plants. Based on chromosome morphology and distribution patterns of the studied molecular cytogenetic markers, all chromosome pairs in karyotypes were identified, and chromosome karyograms and idiograms of P. caeruleum were constructed. The revealed specific microdiagnostic characteristics of P. caeruleum (strongly sinuous cells and anomocytic stomata of the leaf epidermis, and also glandular hairs along the veins) could be useful for raw material identification. In the obtained tetraploids, the predominance of large stomata on the lower leaf epidermis was determined. The studied tetraploids can be used in various breeding programs to obtain high-quality pharmaceutical raw materials of P. caeruleum.

4.
Plants (Basel) ; 11(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36079625

ABSTRACT

Within the complicated and controversial taxonomy of cosmopolitan genus Salvia L. (Lamiaceae) are valuable species Salvia officinalis L. and Salvia sclarea L., which are important for the pharmaceutical, ornamental horticulture, food, and perfume industries. Genome organization and chromosome structure of these essential oil species remain insufficiently studied. For the first time, the comparative repeatome analysis of S. officinalis and S. sclarea was performed using the obtained NGS data, RepeatExplorer/TAREAN pipelines and FISH-based chromosome mapping of the revealed satellite DNA families (satDNAs). In repeatomes of these species, LTR retrotransposons made up the majority of their repetitive DNA. Interspecific variations in genome abundance of Class I and Class II transposable elements, ribosomal DNA, and satellite DNA were revealed. Four (S. sclarea) and twelve (S. officinalis) putative satDNAs were identified. Based on patterns of chromosomal distribution of 45S rDNA; 5S rDNA and the revealed satDNAs, karyograms of S. officinalis and S. sclarea were constructed. Promising satDNAs which can be further used as chromosome markers to assess inter- and intraspecific chromosome variability in Salvia karyotypes were determined. The specific localization of homologous satDNA and 45S rDNA on chromosomes of the studied Salvia species confirmed their common origin, which is consistent with previously reported molecular phylogenetic data.

5.
Plants (Basel) ; 11(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36015406

ABSTRACT

High-copy tandemly organized repeats (TRs), or satellite DNA, is an important but still enigmatic component of eukaryotic genomes. TRs comprise arrays of multi-copy and highly similar tandem repeats, which makes the elucidation of TRs a very challenging task. Oxford Nanopore sequencing data provide a valuable source of information on TR organization at the single molecule level. However, bioinformatics tools for de novo identification of TRs in raw Nanopore data have not been reported so far. We developed NanoTRF, a new python pipeline for TR repeat identification, characterization and consensus monomer sequence assembly. This new pipeline requires only a raw Nanopore read file from low-depth (<1×) genome sequencing. The program generates an informative html report and figures on TR genome abundance, monomer sequence and monomer length. In addition, NanoTRF performs annotation of transposable elements (TEs) sequences within or near satDNA arrays, and the information can be used to elucidate how TR−TE co-evolve in the genome. Moreover, we validated by FISH that the NanoTRF report is useful for the evaluation of TR chromosome organization­clustered or dispersed. Our findings showed that NanoTRF is a robust method for the de novo identification of satellite repeats in raw Nanopore data without prior read assembly. The obtained sequences can be used in many downstream analyses including genome assembly assistance and gap estimation, chromosome mapping and cytogenetic marker development.

6.
Genes (Basel) ; 13(5)2022 04 26.
Article in English | MEDLINE | ID: mdl-35627148

ABSTRACT

Subpolar and polar ecotypes of Deschampsia sukatschewii (Popl.) Roshev, D. cespitosa (L.) P. Beauv, and D. antarctica E. Desv. are well adapted to stressful environmental conditions, which make them useful model plants for genetic research and breeding. For the first time, the comparative repeatome analyses of subpolar and polar D. sukatschewii, D. cespitosa, and D. antarctica was performed using RepeatExplorer/TAREAN pipelines and FISH-based chromosomal mapping of the identified satellite DNA families (satDNAs). In the studied species, mobile genetic elements of class 1 made up the majority of their repetitive DNA; interspecific variations in the total amount of Ty3/Gypsy and Ty1/Copia retroelements, DNA transposons, ribosomal, and satellite DNA were revealed; 12-18 high confident and 7-9 low confident putative satDNAs were identified. According to BLAST, most D. sukatschewii satDNAs demonstrated sequence similarity with satDNAs of D. antarctica and D. cespitosa indicating their common origin. Chromosomal mapping of 45S rDNA, 5S rDNA, and satDNAs of D. sukatschewii allowed us to construct the species karyograms and detect new molecular chromosome markers important for Deschampsia species. Our findings confirmed that genomes of D. sukatschewii and D. cespitosa were more closely related compared to D. antarctica according to repeatome composition and patterns of satDNA chromosomal distribution.


Subject(s)
DNA, Satellite , Poaceae , Antarctic Regions , Chromosomes, Plant/genetics , DNA, Ribosomal , DNA, Satellite/genetics , Plant Breeding , Poaceae/genetics
7.
Front Plant Sci ; 13: 865958, 2022.
Article in English | MEDLINE | ID: mdl-35574118

ABSTRACT

The section Multicaulia is the largest clade in the genus Hedysarum L. (Fabaceae). Representatives of the sect. Multicaulia are valuable plants used for medicinal and fodder purposes. The taxonomy and phylogeny of the sect. Multicaulia are still ambiguous. To clarify the species relationships within sect. Multicaulia, we, for the first time, explored repeatomes of H. grandiflorum Pall., H. zundukii Peschkova, and H. dahuricum Turcz. using next-generation sequencing technologies and a subsequent bioinformatic analysis by RepeatExplorer/TAREAN pipelines. The comparative repeatome analysis showed that mobile elements made up 20-24% (Class I) and about 2-2.5% (Class II) of their repetitive DNAs. The amount of ribosomal DNA varied from 1 to 2.6%, and the content of satellite DNA ranged from 2.7 to 5.1%. For each species, five high confident putative tandem DNA repeats and 5-10 low confident putative DNA repeats were identified. According to BLAST, these repeats demonstrated high sequence similarity within the studied species. FISH-based mapping of 35S rDNA, 5S rDNA, and satDNAs made it possible to detect new effective molecular chromosome markers for Hedysarum species and construct the species karyograms. Comparison of the patterns of satDNA localization on chromosomes of the studied species allowed us to assess genome diversity within the sect. Multicaulia. In all studied species, we revealed intra- and interspecific variabilities in patterns of the chromosomal distribution of molecular chromosome markers. In H. gmelinii Ledeb. and H. setigerum Turcz. ex Fisch. et Meyer, similar subgenomes were detected, which confirmed the polyploid status of their genomes. Our findings demonstrated a close genomic relationship among six studied species indicating their common origin and confirmed the taxonomic status of H. setigerum as a subspecies of H. gmelinii as well as the validity of combining the sect. Multicaulia and Subacaulia into one sect. Multicaulia.

8.
Plants (Basel) ; 10(6)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070920

ABSTRACT

The genus Deschampsia P. Beauv. (Poaceae) involves a group of widespread polymorphic species, and many of them are highly tolerant to stressful environmental conditions. Genome diversity and chromosomal phylogeny within the genus are still insufficiently studied. Satellite DNAs, including CON/COM families, are the main components of the plant repeatome, which contribute to chromosome organization. For the first time, using PCR-based (Polymerase Chain Reaction) techniques and sequential BLAST (Basic Local Alignment Search Tool) and MSA (Multiple Sequence Alignment) analyses, we identified and classified CON/COM repeats in genomes of eleven Deschampsia accessions and three accessions from related genera. High homology of CON/COM sequences were revealed in the studied species though differences in single-nucleotide alteration profiles detected in homologous CON/COM regions indicated that they tended to diverge independently. The performed chromosome mapping of 45S rDNA, 5S rDNA, and CON/COM repeats in six Deschampsia species demonstrated interspecific variability in localization of these cytogenetic markers and facilitated the identification of different chromosomal rearrangements. Based on the obtained data, the studied Deschampsia species were distinguished into karyological groups, and MSA-based schematic trees were built, which could clarify the relationships within the genus. Our findings can be useful for further genetic and phylogenetic studies.

9.
Plants (Basel) ; 10(1)2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33406686

ABSTRACT

The systematic knowledge on the genus Hedysarum L. (Fabaceae: Hedysareae) is still incomplete. The species from the section Hedysarum are valuable forage and medicinal resources. For eight Hedysarum species, we constructed the integrated schematic map of their distribution within Eurasia based on currently available scattered data. For the first time, we performed cytogenomic characterization of twenty accessions covering eight species for evaluating genomic diversity and relationships within the section Hedysarum. Based on the intra- and interspecific variability of chromosomes bearing 45S and 5S rDNA clusters, four main karyotype groups were detected in the studied accessions: (1) H.arcticum, H. austrosibiricum, H. flavescens, H. hedysaroides, and H. theinum (one chromosome pair with 45S rDNA and one pair bearing 5S rDNA); (2) H. alpinum and one accession of H. hedysaroides (one chromosome pair with 45S rDNA and two pairs bearing 5S rDNA); (3) H. caucasicum (one chromosome pair with 45S rDNA and one chromosome pair bearing 5S rDNA and 45S rDNA); (4) H. neglectum (two pairs with 45S rDNA and one pair bearing 5S rDNA). The species-specific chromosomal markers detected in karyotypes of H. alpinum, H. caucasicum, and H. neglectum can be useful in taxonomic studies of this section.

10.
BMC Genet ; 20(1): 92, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31801460

ABSTRACT

BACKGROUND: Grasslands in the Arctic tundra undergo irreversible degradation due to climatic changes and also over-exploitation and depletion of scarce resources. Comprehensive investigations of cytogenomic structures of valuable Arctic and sub-Arctic grassland species is essential for clarifying their genetic peculiarities and phylogenetic relationships, and also successful developing new forage grass cultivars with high levels of adaptation, stable productivity and longevity. We performed molecular cytogenetic characterization of insufficiently studied pasture grass species (Poaceae) from related genera representing two neighboring clades: 1) Deschampsia and Holcus; 2) Alopecurus, Arctagrostis and Beckmannia, which are the primary fodder resources in the Arctic tundra. RESULTS: We constructed the integrated schematic maps of distribution of these species in the northern, central and eastern parts of Eurasia based on the currently available data as only scattered data on their occurrence is currently available. The species karyotypes were examined with the use of DAPI-banding, multicolour FISH with 35S rDNA, 5S rDNA and the (GTT)9 microsatellite motif and also sequential rapid multocolour GISH with genomic DNAs of Deschampsia sukatschewii, Deschampsia flexuosa and Holcus lanatus belonging to one of the studied clades. Cytogenomic structures of the species were specified; peculiarities and common features of their genomes were revealed. Different chromosomal rearrangements were detected in Beckmannia syzigachne, Deschampsia cespitosa and D. flexuosa; B chromosomes with distinct DAPI-bands were observed in karyotypes of D. cespitosa and H. lanatus. CONCLUSIONS: The peculiarities of distribution patterns of the examined chromosomal markers and also presence of common homologous DNA repeats in karyotypes of the studies species allowed us to verify their relationships. The obtained unique data on distribution areas and cytogenomic structures of the valuable Arctic and sub-Arctic pasture species are important for further genetic and biotechnological studies and also plant breeding progress.


Subject(s)
Avena/genetics , Cytogenetic Analysis/methods , Poa/genetics , Chromosome Aberrations , Chromosomes, Plant/genetics , Demography , Karyotype , Tundra
11.
PLoS One ; 14(8): e0221699, 2019.
Article in English | MEDLINE | ID: mdl-31461492

ABSTRACT

The phenotypic, biochemical and genetic variability was studied in M2-M5 generations of ethyl methansulfonat (EMS, 0.2%) mutagenized rapeseed lines generated from canola, '00', B. napus cv. Vikros. EMS mutagenesis induced extensive diversity in morphological and agronomic traits among mutant progeny resulted in selection of EMS populations of B. napus- and B. rapa-morphotypes. The seeds of the obtained mutant lines were high-protein, low in oil and stabilized in contents of main fatty acids which make them useful for feed production. Despite the increased level of various meiotic abnormalities revealed in EMS populations, comparative karyotype analysis and FISH-based visualization of 45S and 5S rDNA indicated a high level of karyotypic stability in M2-M5 plants, and therefore, the obtained mutant lines could be useful in further rapeseed improvement. The revealed structural chromosomal reorganizations in karyotypes of several plants of B. rapa-type indicate that rapeseed breeding by chemical mutagenesis can result in cytogenetic instability in the mutant progeny, and therefore, it should include the karyotype examination. Our findings demonstrate that EMS at low concentrations has great potential in rapeseed improvement.


Subject(s)
Brassica napus/genetics , Genetic Variation , Genome, Plant , Mutagenesis/genetics , Mutation/genetics , Alleles , Brassica napus/anatomy & histology , Chromosomes, Plant/genetics , DNA, Ribosomal/genetics , Fatty Acids/analysis , Karyotype , Meiosis , Phenotype , Pollen/cytology , Pollen/ultrastructure , Seeds/metabolism
12.
Sci Rep ; 9(1): 9155, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31235779

ABSTRACT

The morphological, meiotic and chromosomal variability were studied in two cultivars of Calendula officinalis L. and their mutant lines obtained though chemical mutagenesis using diethyl sulphate (DES) (0.04%, 0.08%) and dimethyl sulphate (DMS) (0.025%, 0.05%). The studied cultivars displayed different sensitivity to DMS and DES mutagens. More M1 plants with morphological changes were observed in C. officinalis cv. 'Zolotoe more' than in cv. 'Rajskij sad'. DMS and DES at low concentrations had positive effects on main agro-metrical traits in both cultivars including plant height, inflorescence diameter and number of inflorescences per plant. Dose-dependent increase in number of various meiotic abnormalities was revealed in both mutant lines. Comparative karyotype analysis and FISH-based visualization of 45S and 5S rDNA indicated a high level of karyotype stability in M1 and M2 plants. Seed treatments with DMS and DES at certain concentrations resulted in higher yields of inflorescences in M1 plants compared to the control. In M2 generation, dose-dependent reduction in the yields of inflorescences was observed. Our findings demonstrate that DMS and DES at low concentrations have great potential in calendula mutation breeding.


Subject(s)
Calendula/cytology , Calendula/genetics , Mutagenesis/drug effects , Mutation , Phenotype , Calendula/drug effects , Cytogenetic Analysis , In Situ Hybridization, Fluorescence , Karyotype , Meiosis/genetics
13.
BMC Evol Biol ; 19(Suppl 1): 49, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30813893

ABSTRACT

BACKGROUND: Members of different sections of the genus Linum are characterized by wide variability in size, morphology and number of chromosomes in karyotypes. Since such variability is determined mainly by the amount and composition of repeated sequences, we conducted a comparative study of the repeatomes of species from four sections forming a clade of blue-flowered flax. Based on the results of high-throughput genome sequencing performed in this study as well as available WGS data, bioinformatic analyses of repeated sequences from 12 flax samples were carried out using a graph-based clustering method. RESULTS: It was found that the genomes of closely related species, which have a similar karyotype structure, are also similar in the repeatome composition. In contrast, the repeatomes of karyologically distinct species differed significantly, and no similar tandem-organized repeats have been identified in their genomes. At the same time, many common mobile element families have been identified in genomes of all species, among them, Athila Ty3/gypsy LTR retrotransposon was the most abundant. The 30-chromosome members of the sect. Linum (including the cultivated species L. usitatissimum) differed significantly from other studied species by a great number of satellite DNA families as well as their relative content in genomes. CONCLUSIONS: The evolution of studied flax species was accompanied by waves of amplification of satellite DNAs and LTR retrotransposons. The observed inverse correlation between the total contents of dispersed repeats and satellite DNAs allowed to suggest a relationship between both classes of repeating sequences. Significant interspecific differences in satellite DNA sets indicated a high rate of evolution of this genomic fraction. The phylogenetic relationships between the investigated flax species, obtained by comparison of the repeatomes, agreed with the results of previous molecular phylogenetic studies.


Subject(s)
DNA, Plant/genetics , Flax/genetics , Flowers/metabolism , Genome, Plant/genetics , Pigmentation , Repetitive Sequences, Nucleic Acid/genetics , Base Sequence , Chromosome Mapping , Evolution, Molecular , Flax/metabolism , Karyotype , Karyotyping , Phylogeny , Retroelements/genetics
14.
Biomed Res Int ; 2018: 4549294, 2018.
Article in English | MEDLINE | ID: mdl-30627557

ABSTRACT

The ontogenesis and reproduction of plants cultivated aboard a spacecraft occur inside the unique closed ecological system wherein plants are subjected to serious abiotic stresses. For the first time, a comparative molecular cytogenetic analysis of Pisum sativum L. (Fabaceae) grown on board the RS ISS during the Expedition-14 and Expedition-16 and also plants of their succeeding (F1 and F2) generations cultivated on Earth was performed in order to reveal possible structural chromosome changes in the pea genome. The karyotypes of these plants were studied by multicolour fluorescence in situ hybridization (FISH) with five different repeated DNA sequences (45S rDNA, 5S rDNA, PisTR-B/1, microsatellite motifs (AG)12, and (GAA)9) as probes. A chromosome aberration was revealed in one F1 plant. Significant changes in distribution of the examined repeated DNAs in karyotypes of the "space grown" pea plants as well as in F1 and F2 plants cultivated on Earth were not observed if compared with control plants. Additional oligo-(GAA)9 sites were detected on chromosomes 6 and 7 in karyotypes of F1 and F2 plants. The detected changes might be related to intraspecific genomic polymorphism or plant cell adaptive responses to spaceflight-related stress factors. Our findings suggest that, despite gradual total trace contamination of the atmosphere on board the ISS associated with the extension of the space station operating life, exposure to the space environment did not induce serious chromosome reorganizations in genomes of the "space grown" pea plants and generations of these plants cultivated on Earth.


Subject(s)
Pisum sativum/genetics , Stress, Physiological/genetics , Chromosome Aberrations , Chromosomes, Plant/genetics , Cytogenetics/methods , DNA, Ribosomal/genetics , Karyotype , Karyotyping/methods , Microsatellite Repeats/genetics , Space Flight/methods
16.
PLoS One ; 12(4): e0175760, 2017.
Article in English | MEDLINE | ID: mdl-28407010

ABSTRACT

The genus Deschampsia P. Beauv (Poaceae) involves a group of widespread polymorphic species. Some of them are highly tolerant to stressful and variable environmental conditions, and D. antarctica is one of the only two vascular plants growing in Antarctic. This species is a source of useful for selection traits and a valuable model for studying an environmental stress tolerance in plants. Genome diversity and comparative chromosomal phylogeny within the genus have not been studied yet as karyotypes of most Deschampsia species are poorly investigated. We firstly conducted a comparative molecular cytogenetic analysis of D. antarctica (Antarctic Peninsula) and related species from various localities (D. cespitosa, D. danthonioides, D. elongata, D. flexuosa (= Avenella flexuosa), D. parvula and D. sukatschewii by fluorescence in situ hybridization with 45S and 5S rDNA, DAPI-banding and sequential rapid in situ hybridization with genomic DNA of D. antarctica, D. cespitosa, and D. flexuosa. Based on patterns of distribution of the examined markers, chromosomes of the studied species were identified. Within these species, common features as well as species peculiarities in their karyotypic structure and chromosomal distribution of molecular cytogenetic markers were characterized. Different chromosomal rearrangements were detected in D. antarctica, D. flexuosa, D. elongata and D. sukatschewii. In karyotypes of D. antarctica, D. cespitosa, D. elongata and D. sukatschewii, 0-3 B chromosomes possessed distinct DAPI-bands were observed. Our findings suggest that the genome evolution of the genus Deschampsia involved polyploidy and also different chromosomal rearrangements. The obtained results will help clarify the relationships within the genus Deschampsia, and can be a basis for the further genetic and biotechnological studies as well as for selection of plants tolerant to extreme habitats.


Subject(s)
Chromosomes, Plant/genetics , Cytogenetic Analysis/methods , In Situ Hybridization, Fluorescence/methods , Poaceae/genetics , Antarctic Regions , Chromosome Aberrations , Chromosome Banding , DNA, Ribosomal/genetics , Genetic Variation , Karyotyping , Poaceae/classification , Polyploidy
17.
Biomed Res Int ; 2017: 4975146, 2017.
Article in English | MEDLINE | ID: mdl-28299328

ABSTRACT

Acid soils limit agricultural production worldwide. Major reason of crop losses in acid soils is the toxicity of aluminum (Al). In the present work, we investigated expression alterations of microRNAs in flax (Linum usitatissimum L.) plants under Al stress. Flax seedlings of resistant (TMP1919 and G1071/4_k) and sensitive (Lira and G1071/4_o) to Al cultivars and lines were exposed to AlCl3 solution for 4 and 24 hours. Twelve small RNA libraries were constructed and sequenced using Illumina platform. In total, 97 microRNAs from 18 conserved families were identified. miR319, miR390, and miR393 revealed expression alterations associated with Al treatment of flax plants. Moreover, for miR390 and miR393, the alterations were distinct in sensitive and resistant to Al genotypes. Expression level changes of miR319 and miR390 were confirmed using qPCR analysis. In flax, potential targets of miR319 are TCPs, miR390-TAS3 and GRF5, and miR393-AFB2-coding transcripts. TCPs, TAS3, GRF5, and AFB2 participate in regulation of plant growth and development. The involvement of miR319, miR390, and miR393 in response to Al stress in flax was shown here for the first time. We speculate that these microRNAs play an important role in Al response via regulation of growth processes in flax plants.


Subject(s)
Aluminum/chemistry , Flax/genetics , Flax/metabolism , MicroRNAs/metabolism , RNA, Plant/metabolism , Crops, Agricultural/drug effects , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Flax/drug effects , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Library , Genes, Plant , Genotype , Polymerase Chain Reaction , Signal Transduction , Soil/chemistry
18.
BMC Evol Biol ; 17(Suppl 2): 253, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29297314

ABSTRACT

BACKGROUND: The species relationships within the genus Linum have already been studied several times by means of different molecular and phylogenetic approaches. Nevertheless, a number of ambiguities in phylogeny of Linum still remain unresolved. In particular, the species relationships within the sections Stellerolinum and Dasylinum need further clarification. Also, the question of independence of the species of the section Adenolinum still remains unanswered. Moreover, the relationships of L. narbonense and other species of the section Linum require further clarification. Additionally, the origin of tetraploid species of the section Linum (2n = 30) including the cultivated species L. usitatissimum has not been explored. The present study examines the phylogeny of blue-flowered species of Linum by comparisons of 5S rRNA gene sequences as well as ITS1 and ITS2 sequences of 35S rRNA genes. RESULTS: High-throughput sequencing has been used for analysis of multicopy rRNA gene families. In addition to the molecular phylogenetic analysis, the number and chromosomal localization of 5S and 35S rDNA sites has been determined by FISH. Our findings confirm that L. stelleroides forms a basal branch from the clade of blue-flowered flaxes which is independent of the branch formed by species of the sect. Dasylinum. The current molecular phylogenetic approaches, the cytogenetic analysis as well as different genomic DNA fingerprinting methods applied previously did not discriminate certain species within the sect. Adenolinum. The allotetraploid cultivated species L. usitatissimum and its wild ancestor L. angustifolium (2n = 30) could originate either as the result of hybridization of two diploid species (2n = 16) related to the modern L. gandiflorum and L. decumbens, or hybridization of a diploid species (2n = 16) and a diploid ancestor of modern L. narbonense (2n = 14). CONCLUSIONS: High-throughput sequencing of multicopy rRNA gene families allowed us to make several adjustments to the phylogeny of blue-flowered flax species and also reveal intra- and interspecific divergence of the rRNA gene sequences.


Subject(s)
Biological Evolution , Flax/genetics , Genes, Plant , Genes, rRNA , High-Throughput Nucleotide Sequencing/methods , RNA, Ribosomal/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Consensus Sequence/genetics , DNA, Ribosomal/genetics , Genetic Variation , Karyotype , Metaphase , Phylogeny , Repetitive Sequences, Nucleic Acid/genetics , Species Specificity
19.
BMC Plant Biol ; 17(Suppl 2): 253, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29297347

ABSTRACT

BACKGROUND: Flax (Linum usitatissimum L.) is a crop plant used for fiber and oil production. Although potentially high-yielding flax varieties have been developed, environmental stresses markedly decrease flax production. Among biotic stresses, Fusarium oxysporum f. sp. lini is recognized as one of the most devastating flax pathogens. It causes wilt disease that is one of the major limiting factors for flax production worldwide. Breeding and cultivation of flax varieties resistant to F. oxysporum is the most effective method for controlling wilt disease. Although the mechanisms of flax response to Fusarium have been actively studied, data on the plant response to infection and resistance gene candidates are currently very limited. RESULTS: The transcriptomes of two resistant and two susceptible flax cultivars with respect to Fusarium wilt, as well as two resistant BC2F5 populations, which were grown under control conditions or inoculated with F. oxysporum, were sequenced using the Illumina platform. Genes showing changes in expression under F. oxysporum infection were identified in both resistant and susceptible flax genotypes. We observed the predominant overexpression of numerous genes that are involved in defense response. This was more pronounced in resistant cultivars. In susceptible cultivars, significant downregulation of genes involved in cell wall organization or biogenesis was observed in response to F. oxysporum. In the resistant genotypes, upregulation of genes related to NAD(P)H oxidase activity was detected. Upregulation of a number of genes, including that encoding beta-1,3-glucanase, was significantly greater in the cultivars and BC2F5 populations resistant to Fusarium wilt than in susceptible cultivars in response to F. oxysporum infection. CONCLUSIONS: Using high-throughput sequencing, we identified genes involved in the early defense response of L. usitatissimum against the fungus F. oxysporum. In response to F. oxysporum infection, we detected changes in the expression of pathogenesis-related protein-encoding genes and genes involved in ROS production or related to cell wall biogenesis. Furthermore, we identified genes that were upregulated specifically in flax genotypes resistant to Fusarium wilt. We suggest that the identified genes in resistant cultivars and BC2F5 populations showing induced expression in response to F. oxysporum infection are the most promising resistance gene candidates.


Subject(s)
Disease Resistance/genetics , Flax/microbiology , Fusarium/metabolism , Plant Diseases/microbiology , Disease Susceptibility/metabolism , Flax/genetics , Flax/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genetic Predisposition to Disease/genetics , Genotype , High-Throughput Nucleotide Sequencing
20.
BMC Plant Biol ; 16(Suppl 3): 237, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-28105944

ABSTRACT

BACKGROUND: Cultivated flax (Linum usitatissimum L.) is widely used for production of textile, food, chemical and pharmaceutical products. However, various stresses decrease flax production. Search for genes, which are involved in stress response, is necessary for breeding of adaptive cultivars. Imbalanced concentration of nutrient elements in soil decrease flax yields and also results in heritable changes in some flax lines. The appearance of Linum Insertion Sequence 1 (LIS-1) is the most studied modification. However, LIS-1 function is still unclear. RESULTS: High-throughput sequencing of transcriptome of flax plants grown under normal (N), phosphate deficient (P), and nutrient excess (NPK) conditions was carried out using Illumina platform. The assembly of transcriptome was performed, and a total of 34924, 33797, and 33698 unique transcripts for N, P, and NPK sequencing libraries were identified, respectively. We have not revealed any LIS-1 derived mRNA in our sequencing data. The analysis of high-throughput sequencing data allowed us to identify genes with potentially differential expression under imbalanced nutrition. For further investigation with qPCR, 15 genes were chosen and their expression levels were evaluated in the extended sampling of 31 flax plants. Significant expression alterations were revealed for genes encoding WRKY and JAZ protein families under P and NPK conditions. Moreover, the alterations of WRKY family genes differed depending on LIS-1 presence in flax plant genome. Besides, we revealed slight and LIS-1 independent mRNA level changes of KRP2 and ING1 genes, which are adjacent to LIS-1, under nutrition stress. CONCLUSIONS: Differentially expressed genes were identified in flax plants, which were grown under phosphate deficiency and excess nutrition, on the basis of high-throughput sequencing and qPCR data. We showed that WRKY and JAS gene families participate in flax response to imbalanced nutrient content in soil. Besides, we have not identified any mRNA, which could be derived from LIS-1, in our transcriptome sequencing data. Expression of LIS-1 flanking genes, ING1 and KRP2, was suggested not to be nutrient stress-induced. Obtained results provide new insights into edaphic stress response in flax and the role of LIS-1 in these process.


Subject(s)
Flax/physiology , Gene Expression Regulation, Plant , Plant Proteins/genetics , Soil/chemistry , Flax/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...