Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38203788

ABSTRACT

Detection of the Kirsten rat sarcoma gene (KRAS) mutational status is an important factor for the treatment of various malignancies. The most common KRAS-activating mutations are caused by single-nucleotide mutations, which are usually determined by using PCR, using allele-specific DNA primers. Oligonucleotide primers with uncharged or partially charged internucleotide phosphate modification have proved their ability to increase the sensitivity and specificity of various single nucleotide mutation detection. To enhance the specificity of single nucleotide mutation detection, the novel oligonucleotides with four types of uncharged and partially charged internucleotide phosphates modification, phosphoramide benzoazole (PABA) oligonucleotides (PABAO), was used to prove the concept on the KRAS mutation model. The molecular effects of different types of site-specific PABA modification in a primer or a template on a synthesis of full-length elongation product and PCR efficiency were evaluated. The allele-specific PCR (AS-PCR) on plasmid templates showed a significant increase in analysis specificity without changes in Cq values compared with unmodified primer. PABA modification is a universal mismatch-like disturbance, which can be used for single nucleotide polymorphism discrimination for various applications. The molecular insights of the PABA site-specific modification in a primer and a template affect PCR, structural features of four types of PABAO in connection with AS-PCR results, and improvements of AS-PCR specificity support the further design of novel PCR platforms for various biological targets testing.


Subject(s)
4-Aminobenzoic Acid , Amides , Oligonucleotides , Phosphoramides , Phosphoric Acids , Oligonucleotides/genetics , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins p21(ras) , Phosphates , Nucleotides , Azoles , Polymerase Chain Reaction
2.
Biochem Biophys Res Commun ; 693: 149390, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38128245

ABSTRACT

In this work, we for the first time conducted a detailed study on the structure, dynamics, and hybridization properties of N-benzimidazole group-bearing phosphoramide benzoazole oligonucleotides (PABAOs) that we developed recently. By circular dichroism we established that the introduction of the modifications does not disrupt the B conformation of the DNA double helix. The formation of complexes is approximated by a two-state model. Complexes of PABAOs with native oligodeoxriboynucleotides form efficiently, and the introduction of such modifications reduces thermal stability of short duplexes (8-10 bp) by ∼5°Ð¡ per modification. Using UV-spectroscopy analysis, a neutral charge of the phosphate residue modified by the N-benzimidazole moiety in the pH range of 3-9.5 was found. The results confirm possible usefulness of PABAOs for both basic research and biomedical applications.


Subject(s)
Oligonucleotides , Phosphoramides , Oligonucleotides/chemistry , Nucleic Acid Denaturation , DNA/chemistry , Nucleic Acid Hybridization , Nucleic Acid Conformation , Thermodynamics , Circular Dichroism
SELECTION OF CITATIONS
SEARCH DETAIL
...