Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34287117

ABSTRACT

An intracellular bacterium, strain IAST, was observed to infect several species of the plant-parasitic nematode genus Xiphinema (Xiphinema astaregiense, Xiphinema incertum, Xiphinema madeirense, Xiphinema pachtaicum, Xiphinema parapachydermum and Xiphinema vallense). The bacterium could not be recovered on axenic medium. The 16S rRNA gene sequence of IAST was found to be new, being related to the family Burkholderiaceae, class Betaproteobacteria. Fungal endosymbionts Mycoavidus cysteinexigens B1-EBT (92.9 % sequence identity) and 'Candidatus Glomeribacter gigasporarum' BEG34 (89.8 % identity) are the closest taxa and form a separate phylogenetic clade inside Burkholderiaceae. Other genes (atpD, lepA and recA) also separated this species from its closest relatives using a multilocus sequence analysis approach. These genes were obtained using a partial genome of this bacterium. The localization of the bacterium (via light and fluorescence in situ hybridization microscopy) is in the X. pachtaicum females clustered around the developing oocytes, primarily found embedded inside the epithelial wall cells of the ovaries, from where they are dispersed in the intestine. Transmission electron microscopy (TEM) observations supported the presence of bacteria inside the nematode body, where they occupy ovaries and occur inside the intestinal epithelium. Ultrastructural analysis of the bacterium showed cells that appear as mostly irregular, slightly curved rods with rounded ends, 0.8-1.2 µm wide and 2.5-6.0 µm long, possessing a typical Gram-negative cell wall. The peptidoglycan layer is, however, evident only occasionally and not detectable by TEM in most cells. Another irregularly occurring shell surrounding the endosymbiont cells or the cell clusters was also revealed, probably originating from the host cell membrane. Flagella or spore-like cells do not occur and the nucleoid is diffusely distributed throughout the cell. This endosymbiont is transmitted vertically through nematode generations. These results support the proposal of IAST as a new species, although its obligate intracellular and obligate endosymbiont nature prevented isolation of a definitive type strain. Strain IAST is therefore proposed as representing 'Candidatus Xiphinematincola pachtaicus' gen. nov., sp. nov.


Subject(s)
Burkholderiaceae/classification , Nematoda/microbiology , Phylogeny , Symbiosis , Animals , Bacterial Typing Techniques , Base Composition , Burkholderiaceae/isolation & purification , Citrus/parasitology , DNA, Bacterial/genetics , Fatty Acids/chemistry , Female , Genes, Bacterial , In Situ Hybridization, Fluorescence , RNA, Ribosomal, 16S/genetics , Rhizosphere , Sequence Analysis, DNA , Spain
2.
J Morphol ; 281(11): 1411-1435, 2020 11.
Article in English | MEDLINE | ID: mdl-32845531

ABSTRACT

Spermatogenesis of five rhabditid nematodes was studied using transmission electron microscopy and is described herein. Structure and development of nematode sperm in all available representatives of the extensive order Rhabditida have been analysed and the main characteristics of each infraorder are discussed. The ancestral sperm of the order Rhabditida was reconstructed using maximum likelihood and Bayesian methods based on 44 ultrastructural sperm characters. The hypothetical ancestral spermatogenesis of the order Rhabditida agrees with the previously suggested "rhabditid" pattern and appears to be conserved throughout the order Rhabditida. Despite the enormous variation of rhabditid nematodes, few groups deviate from the ancestral pattern. This conserved pattern can be informative within the phylum Nematoda at order level, but poses limitations when used in taxonomic and phylogenetic analysis within Rhabditida.


Subject(s)
Biological Evolution , Rhabditida/anatomy & histology , Rhabditida/cytology , Spermatozoa/cytology , Animals , Bayes Theorem , Female , Likelihood Functions , Male , Phylogeny , Rhabditida/growth & development , Spermatogenesis , Spermatozoa/ultrastructure
3.
Micron ; 89: 43-55, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27468638

ABSTRACT

The nematode spermatozoa represent a highly modified (aberrant) type of male gametes that lack a flagellum but for which the process of spermatogenesis culminates in the production of a crawling spermatozoon on the basis of the cytoskeletal component known as "major sperm protein", or MSP. MSP is also known as an important hormone triggering oocyte maturation and ovulation in the model nematode Caenorhabditis elegans, where this protein was first identified. However, direct evidence of MSP localization and of its fate in nematode spermatogenic cells is rare. In this study, the spermatogenesis and sperm structure in the rhabditid nematode Acrobeles complexus (Rhabditida: Tylenchina: Cephalobomorpha: Cephaloboidea: Cephalobidae) has been examined with electron microscopy. Morphological observations were followed by high-pressure freezing and freeze-substitution fixation which allows post-embedding immunogold localization of MSP in all stages of sperm development using antibodies raised for MSP of C. elegans. In spermatocytes, synthetic activity results in the development of specific cellular components, fibrous bodies (FB) and membranous organelles (MO), which appear as FB-MO complexes where the filamentous matter of FB has been MSP-labeled. The spermatids subdivide into a residual body with superfluous cytoplasm, and a main cell body which contains nucleus, mitochondria and FB-MO complexes. These complexes dissociate into individual components, MO and FB, with the MSP being localized in FB. Immature spermatozoa from testes are opaque cells where a centrally located nucleus is surrounded by mitochondria, MO and FB clustered together, the MSP still being localized only in FB. Cytoplasm of mature spermatozoa from spermatheca is segregated into external pseudopods lacking organelles and a central cluster of mitochondria with intact MO surrounding the central nucleus. The FB ultimately disappear, and the MSP labeling becomes concentrated in the filamentous content of pseudopods and cytoplasm of the main cell body. Although the spermatogenesis and sperm structure of A. complexus is similar to that of many other rhabditid nematodes, their intact MO makes the morphology of the mature spermatozoa distinct from the "rhabditid pattern" and may be considered as a synapomorphy. The MSP localization in spermatogenic cells of A. complexus also follows the "rhabditid pattern" described in C. elegans and Ascaris spp. Our results and techniques of MSP labeling of A. complexus spermatogeneous cells reveal new possibilities to elucidate different research questions on MSP localization in nematodes related to C. elegans. Furthermore, the laboratory-cultured A. complexus strains can be used as a new and fascinating model to study MO and MSP functions in nematode reproduction.


Subject(s)
Helminth Proteins/analysis , Rhabditida/chemistry , Rhabditida/ultrastructure , Spermatocytes/ultrastructure , Animals , Cell Nucleus , Cytoskeleton/ultrastructure , Helminth Proteins/immunology , Immunohistochemistry , Male , Microscopy, Electron/methods , Spermatids/chemistry , Spermatids/cytology , Spermatids/ultrastructure , Spermatocytes/chemistry , Spermatogenesis
4.
Micron ; 77: 25-31, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26093476

ABSTRACT

The spermatozoa from testis and spermatheca of the plant-parasitic nematode Trichodorus similis Seinhorst, 1963 (Nematoda; Triplonchida; Trichodoridae) were studied with transmission electron microscopy (TEM), being the first study on spermatogenesis of a representative of the order Triplonchida and important to unravel nematode sperm evolution. Comprehensive results could only be obtained using high-pressure freezing (HPF) and freeze-substitution instead of chemical fixation, demonstrating the importance of cryo-fixation for nematode ultrastructural research. The spermatozoa from the testis (immature spermatozoa) are unpolarized cells covered by numerous filopodia. They contain a centrally-located nucleus without a nuclear envelope, surrounded by mitochondria. Specific fibrous bodies (FB) as long parallel bundles of filaments occupy the peripheral cytoplasm. No structures resembling membranous organelles (MO), as found in the sperm of many other nematodes, were observed in immature spermatozoa of T. similis. The spermatozoa from the uterus (mature or activated spermatozoa) are bipolar cells with an anterior pseudopod and posterior main cell body (MCB), which include a nucleus, mitochondria and MO appearing as large vesicles with finger-like invaginations of the outer cell membrane, or as large vesicles connected to the inner cell membrane. The peripheral MO open to the exterior via pores. In the mature sperm, neither FBs nor filopodia were observed. An important feature of T. similis spermatozoa is the late formation of MO; they first appear in mature spermatozoa. This pattern of MO formation is known for several other orders of the nematode class Enoplea: Enoplida, Mermithida, Dioctophymatida, Trichinellida but has never been observed in the class Chromadorea.


Subject(s)
Freezing , Nematoda/ultrastructure , Spermatozoa/ultrastructure , Animals , Cell Nucleus/ultrastructure , Freeze Substitution , Male , Microscopy, Electron, Transmission , Nuclear Envelope/ultrastructure , Plants/parasitology , Pseudopodia/ultrastructure , Sperm Maturation , Spermatogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...